首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water + isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters.The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well-flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~ 1-2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to > 50%), as no particle or agglomerate larger than ~ 2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to a few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surface chemistry), poor deposition efficiencies and porous layers are obtained.Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~ 70%) is obtained by suitable mixtures of micron- and nano-sized powders, on account of synergistic effects.  相似文献   

2.
ZnO/Al2O3 coatings were prepared by atmospheric plasma spraying (APS) using ZnO powders and Al2O3 powders as starting materials. The dielectric properties of these coatings were discussed. Both the real part of permittivity and the energy loss increase greatly with increasing ZnO content over the frequency range 8.2-12.4 GHz, which can be ascribed to orientation polarization and relaxation polarization due to a higher ZnO content. The frequency-dependent maximum of the loss tangent is found to obey Debye theory. In addition, annealing temperature which leads to the change of ZnO content also plays an important role in the dielectric performance.  相似文献   

3.
The goal of this study is to compare two Atmospheric Plasma Spraying (APS) systems for elaborating alumina/titania coatings with good wear resistance. Both torches used were a common d.c. current Gas-Stabilized Plasma gun (GSP) with argon and hydrogen as plasma forming gases, and a Water-Stabilized high-throughput Plasma gun (WSP) working with water as plasma forming substance. The feedstock were either cladded alumina/titania powder or a mixture of conventional fused and crushed Al2O3 powder with agglomerated TiO2 nanometric particles, the resulting mean size in both cases being about 50 µm. Feedstock material phases were α-alumina and anatase titanium dioxide and the composition of both powders was 13 wt.% of TiO2 in Al2O3. Coatings obtained were analyzed by scanning electron microscopy (SEM). They presented lamellar structures with titania uniformly distributed in the alumina matrix, for both spray techniques. X-ray diffraction showed that anatase phase of titania was converted into rutile phase. The wear resistance tested by slurry abrasion (SAR) has shown that the best coating was that obtained with cladded powder sprayed by GSP process. This finding matched with the highest microhardness of this coating (Vickers indentation). It is worth noting that with these two relatively dissimilar torches similar results were obtained for the wear resistance of alumina-13 wt.% titania coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号