首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.  相似文献   

2.
The nitriding behavior of AISI M2 steel was studied on samples previously submitted to two different heat treatments in order to investigate the effects of the initial microstructure on the thickness and hardness of nitrided layer. Prior to nitriding, one group of samples was fully annealed while the other group was quenched and tempered, thus acquiring the lowest and highest hardness respectively. Plasma nitriding was performed at 450 °C for 8 h with a mixture of N2 and H2 in a plasma reactor working under floating potential. Structural and mechanical properties of nitrided layers were characterized using X-ray diffraction (XRD), optical microscopy and microhardness testing. Variations in surface roughness were obtained by 3D surface profilometry analysis. The thicker nitrided layer was obtained for the fully annealed samples, in which the nitrided layer is composed of γ′-Fe4N and ε-Fe2-3N phases plus a diffusion zone. For the hardened-tempered samples, the nitrided region mainly consisted of a diffusion zone. Plasma nitriding increased the surface hardness of the fully annealed samples by 330% and that of the quenched-tempered samples by 50%. The nitrided depth was also estimated using cross-sectional microhardness profiles; giving about 140 µm and ∼ 70 µm for the fully annealed and quenched-tempered samples, respectively. Due to the grain to grain nitrogen diffusion, plasma nitriding also increased the surface roughness. The largest roughness was obtained for the fully annealed samples, in accordance with the largest nitrided depth. The difference in the nitriding behavior was explained on the basis of the microstructural aspects of the substrates such as the concentration of the freely dispersed alloying elements and the level of compressive residual stresses.  相似文献   

3.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

4.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

5.
In the present study, plasma nitriding of AISI type 303 austenitic stainless steel (SS) specimens was performed using a microwave system. The nitrided layers were characterized by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Vickers microhardness test. The antibacterial activities of the nitrided layers were evaluated. XRD and TEM showed that a single γN phase was formed by plasma nitriding at the plasma power of 700 W and 450 °C. The analytical results demonstrated that the hardness of type 303 specimens could be enhanced by plasma nitriding because of the formation of the γN phase. A bacterial test also demonstrated that the nitrided layer exhibited excellent antibacterial properties.  相似文献   

6.
Active screen plasma nitriding (ASPN) was conceived in order to reduce negative effects observed in direct current plasma nitriding arising from the application of bias to the components. The mechanism of nitrogen mass transfer in ASPN is still not fully understood. Here, we compare the microstructure, composition and hardness response of AISI P20 and H13 steels after nitriding. A set of samples was nitrided with sample bias applied directly and another set was nitrided at floating potential under an active screen. Similar nitrogen content and hardness profiles were obtained for the samples treated using a bias and under an active screen separated from the samples by 12 mm. When the sample-screen separation was increased from 12 to 70 mm the hardness response improved. The principle processes occurring during ASPN are proposed based on the experimental results. In ASPN, a flux of energetic nitrogen species is generated by the active screen which, provided that the samples are within the range of the energetic species, bombards the surface of the samples being treated. This flux is critical in establishing a nitrogen potential and a satisfactory response in the components.  相似文献   

7.
Abstract

Active screen plasma nitriding (ASPN) is commonly used when regular surface hardening is necessary. The ASPN technique produces a more homogeneous surface coating than direct current plasma nitriding (DCPN) due to different process principles. The term active screen in plasma nitriding refers to a cathodic cage with a defined geometry. The purpose of this work was to study the differences between ASPN using a hemispherical cathodic cage and ASPN using a normal cylindrical cathodic cage. Following some trials using similar parameters, the tests were carried out with three conditions: with DCPN, with a cylindrical cathodic cage in ASPN and with a hemispherical cathodic cage in ASPN. X-ray diffraction and scanning electron microscopy analysis together with energy dispersive spectroscopy were applied to characterise the nitrided layers. The nitrided layers are not the same for each of the conditions used. The ASPN with a hemispherical cathodic cage produced a layer of almost Fe3N alone, while the other processes gave significant amounts of Fe4N in the nitrided layer. Scanning electron microscopy analysis showed different surface morphology for each condition.  相似文献   

8.
The nitriding of low alloy steel has been carried out at anodic potential in a space enclosed by an active screen that consists of two cylinders with different diameter. These two cylinders made up a hollow cathode in a discharge system. The difference in diameter of the two cylinders is about 8-10 mm to maintain strong discharge between them. They can also be heated rapidly to the required temperature for treatment. The sample to be nitrided was held at the same potential as that of the anode used in the discharge and heated through heat radiation from the hot cylinders and by electron bombardment. Electrons bombarded the surface of the sample even though the intensity of bombardment was low because of the anodic sheath. To illustrate the effect of the anodic potential on the nitriding a comparison was made between nitriding at anodic and cathodic potential (general plasma nitriding). The phase composition, the compound layer thickness and the surface topography of the nitrided layer, as well as its properties, were investigated using X-ray diffraction, scanning electron microscopy and microhardness tester. In particular, the corrosion properties of the untreated and plasma nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The results showed that anodic plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the low alloy steel.  相似文献   

9.
In this study, the wear- and corrosion resistance of the layers formed on the surface of a precipitation hardenable plastic mold steel (NAK55) by plasma nitriding were investigated. Plasma nitriding experiments were carried out at an industrial nitriding facility in an atmosphere of 25% N2 + 75% H2 at 475 °C, 500 °C, and 525 °C for 10 h. The microstructures of the nitrided layers were examined, and various phases present were determined by X-ray diffraction. Wear tests were carried out on a block-on-ring wear tester under unlubricated conditions. The corrosion behaviors were evaluated using anodic polarization tests in 3.5% NaCl solution.The findings had shown that plasma nitriding does not cause the core to soften by overaging. Nitriding and aging could be achieved simultaneously in the same treatment cycle. Plasma nitriding of NAK55 mold steel produced a nitrided layer consisted of a compound layer rich in ε-nitride and an adjacent nitrogen diffusion layer on the steel surface. Increasing the nitriding temperature could bring about increase in the thickness of the nitrided layer and the nitride volume fraction. Plasma nitriding improved not only surface hardness but also wear resistance. The anti-wear property of the steel was found to relate to the increase in the thickness of the diffusion layer. Corrosion study revealed that plasma nitriding significantly improved corrosion resistance in terms of corrosion potential and corrosion rate. Improvement in corrosion resistance was found to be directly related to the increase in the nitride volume fraction at the steel surface.  相似文献   

10.
Direct in-situ observation of phase generation and growth during heat treatment cycles gives information independent e.g. of effects resulting from cooling and atmospheric changes of properties. In this investigation time resolved in-situ X-ray diffraction (XRD) analysis of growing nitride layers during plasma nitriding was conducted to gain experimental data of growing compound layers for different plasma nitriding parameters. With two gas mixtures of 5% N2-95% H2 and 25% N2-75% H2. plasma nitriding of an AISI 1045 steel was performed in the temperature range of 450 °C < T < 560 °C. The in-situ XRD-observation consisted of series of 50 to 60 single runs of phase analysis during a 3-h plasma nitriding treatment. Nitriding with the formation of nitride phases starts at different times, depending on the nitriding temperature and the gas composition in the plasma for the given plasma parameters pressure, voltage and current density. The higher the nitriding temperature and the higher the nitrogen content in the process gas the shorter is the time for the first detection of the γ′-Fe4N-phase. Single phase γ′nitride layers were detected for the 5% N2-95% H2 gas mixture in a temperature range 450 °C < T < 560 °C. For the highest temperatures 540 °C and 560 °C and the gas mixture 25% N2-75% H2 the ε-Fe2-3N phase occurred later in the plasma nitriding process. Assuming that nitride layers in plasma nitriding also grow by nucleation of small γ′ particles up to a complete layer, the experimental data fitted in a reasonable way in plots calculated for the incubation time of the γ′-phase during gas nitriding.  相似文献   

11.
AISI 304 austenitic stainless steel was plasma nitrided at the temperature ranging from 410 to 520 °C with pre-shot peening. The structural phases, micro-hardness and electrochemical behavior of the nitrided layer were investigated by optical microscopy, X-ray diffraction, micro-hardness testing and anodic polarization testing. The effects of shot peening on the nitride formation, nitride layer growth and corrosion properties were discussed. The results showed that shot peening enhanced the nitrogen diffusion rate and led to a twice thicker nitrided layer than the un-shot peening samples under the same plasma nitriding conditions (410 °C, 4 h). The nitrided layer was composed of single nitrogen expanded austenite (S-phase) when nitriding below 480 °C, which had combined improvement in hardness and corrosion resistance.  相似文献   

12.
活性屏离子渗氮技术的研究   总被引:14,自引:2,他引:14  
在真空室内放置一个钢制网状圆筒,并与直流高压电的负极相接,在直流电场的作用下,通过气体离子对圆筒的轰击溅射,产生了一些纳米数量级的活性粒子,利用这些高活性的纳米粒子簇可以对放置在圆筒内的钢件表面进行渗氮处理。试验证明,这些活性粒子是中性的Fe4N粒子,被处理的工件既可以处于悬浮电位,也可以接地。活性屏离子渗氮可以获得和直流离子渗氮同样的处理效果,并解决了直流离子渗氮技术多年来一直存在的许多难以克服的问题。  相似文献   

13.
This paper investigated the possibility of increasing the surface hardness of austenitic stainless steels under very low nitrogen dissociation pressures of metal nitride powders using pack nitriding process. Thin sheet of 304 type of stainless steel of approximately 1 mm in thickness was used as a substrate for the study. Based on the results of thermochemical calculations, Cr2N powder was selected as a nitrogen source from a series of metal nitride powders considered for the pack nitriding process, which included Si3N4, Mn4N, BN, AlN and TiN. The pack nitriding was carried out in a sealed alumina retort at temperatures of 860 °C and 910 °C for up to 48 h. The surface was then characterised using techniques of SEM, XRD and microhardness testing. It was observed that the process used increased the surface hardness of the steel, but it also induced precipitation of chromium nitrides in the matrix even under the nitrogen dissociation pressures below 50 Pa. It was also observed that, in the nitrided layer, the γ phase of the steel was partially transformed to the α phase under the pack nitriding process conditions studied.  相似文献   

14.
Active screen (AS) is an advanced technology for plasma surface engineering, which offers some advantages over conventional direct current (DC) plasma treatments. Such surface defects and process instabilities as arcing, edge and hollow cathode effects can be minimised or completely eliminated by the AS technique, with consequent improvements in surface quality and material properties. However, the lack of information and thorough understanding of the process mechanisms generate scepticism in industrial practitioners.In this project, AISI 316 specimens were plasma carburised and plasma nitrided at low temperature in AS and DC furnaces, and the treated samples were comparatively analysed. Two diagnostic techniques were used to study the plasma: optical fibre assisted optical emission spectroscopy, and a planar electrostatic probe. Optimum windows of treatment conditions for AS plasma nitriding and AS plasma carburising of austenitic stainless steel were identified and some evidence was obtained on the working principles of AS furnaces. These include the sputtering of material from the cathodic mesh and its deposition on the worktable, the generation of additional active species, and the electrostatic confinement of the plasma within the operative volume of the furnace.  相似文献   

15.
Plasma nitriding is a widely used technique for increasing the surface hardness of stainless steels, and consequently, for improving their tribological properties. It is also used to create an interface between soft stainless steel substrates and hard coatings to improve adhesion. This paper reports on the mechanical and corrosion properties of AISI301 stainless steel (SS) after a duplex treatment consisting of plasma nitriding followed by deposition of Cr bond coat and CrSiN top layer by magnetron sputtering. Mechanical properties of the deposited films, such as hardness (H) and reduced Young's modulus (Er), were measured using depth-sensing indentation. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were carried out to evaluate resistance to localized and to general corrosion, respectively. The corrosion behavior has been correlated with the microstructure and composition of the surface layers, determined by complementary characterization techniques, including XRD, SEM, and EDS. The CrSiN layers exhibited an H value of 24 GPa, whereas the nitrided layer was shown to present a gradual increase of H from 5 GPa (in the nitrogen-free SS matrix) to almost 14 GPa at the surface. The electrochemical measurements showed that the nitriding temperature is a critical parameter for defining the corrosion properties of the duplex-treated SS. At a relatively high temperature (723 K), the nitrided layer exhibited poor corrosion resistance due to the precipitation of chromium nitride compounds and the depletion of Cr in the iron matrix. This, in turn, leads to poor corrosion performance of the duplex-treated SS since pores and defects in the CrSiN film were potential sites for pitting. At relatively low nitriding temperature (573 K), the nitrided interface exhibited excellent corrosion resistance due to the formation of a compound-free diffusion layer. This is found to favor passivation of the material at the electrode/electrolyte interface of the duplex-treated SS.  相似文献   

16.
Plasma nitriding is a promising posttreatment technique to create a nitride layer on electroplated chromium coatings for improving their corrosion resistance. In the present study, the effects of plasma nitriding on the corrosion properties of electroplated chromium/C45 mild steel were investigated using electrochemical characterization. The chromium plated samples were nitrided using a pulsed direct current glow discharge in an NH3 atmosphere. The polarization curve measurement results showed that the plasma nitrided samples exhibited more positive corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and evident passivation when compared with unnitrided chromium plating/substrate system. The high value of Ecorr and low value of Icorr imply an improvement of the corrosion resistance of the coating/substrate system after plasma nitriding.  相似文献   

17.
针对离子渗氮渗层浅及生产周期长等技术难题,采用预氧化与稀土复合催渗对工程常用结构钢42CrMo进行了离子渗氮。利用显微硬度计、光学显微镜(OM)、扫描电镜(SEM)等对渗氮速率、渗氮层组织、表面形貌等进行了系统的研究。结果表明,经400 ℃×1 h氧化+0.6 cm2/kg(铈表面积/装炉量)稀土的复合催渗工艺具有最佳催渗效果;与无催渗试样相比,优化后的复合催渗不仅提高了渗氮效率,同时减少了脉状氮化物,且降低了渗氮层的硬度梯度。  相似文献   

18.
Cylindrical samples of 1020 steel and 316 stainless steel were nitrided under the conditions by conventional dc plasma nitriding (DCPN) and by a new technique denominate cathodic cage plasma nitriding (CCPN). The 1020 and 316 stainless steel samples were treated during 3 h and 5 h, respectively, in 773 K and 360 Pa. The samples were characterized by optical microscopy, X-ray diffraction and microhardness testing. All the samples nitrided by DCPN process presented erosion rings on the surface exposed to the plasma. In comparison, in samples nitrided by CCPN, the erosion rings were completely eliminated, without loss of the mechanical properties in the different phases of existence in the nitrided layer.  相似文献   

19.
The phenomenon of delayed cracking in nitrided layers after DC-plasma nitriding of AISI 420 steel has been observed by optical microscopy. Prior to the plasma treatment, the samples were austenitized at 1303 K for 30 min and then oil quenched. Two tempering conditions were assessed: one group was tempered at 673 K, while another group was tempered at 943 K.All samples were subjected to sputtering, in the plasma chamber, to remove the passive oxide layer, under a 1:1 Ar/H2 atmosphere. Finally, specimens were plasma nitrided at 673 K for 20 h, with a 1/3: N2/H2 relation, at a pressure of 6.5 hPa and 700 V bias in the nitriding chamber.The nitrided layers were analyzed initially by X-ray diffraction (XRD). Detailed observations were conducted at frequent and regular intervals under optical microscopy (OM) and scanning electron microscopy (SEM) with secondary and back-scattered electrons detectors. The results revealed that after an incubation time, even without any external disturbance, cracks are formed and propagate in the nitrided layers. Both groups of samples were equally affected. The presence of precipitated particles and local residual stresses are possible causes of such a phenomenon.  相似文献   

20.
Abstract

A novel active screen plasma nitriding (ASPN) process provided excellent temperature homogeneity in the load and showed further progress in the control of nitriding potential. In addition to a variation of the nitrogen partial pressure in the process gas commonly used in the conventional plasma nitriding, the applied bias power strongly impacted the nitriding results. In the present work, an application of both methods for the control of nitriding potential in the ASPN process was systematically investigated for a wide range of process parameters to meet the treatment requirements for different types of engineering steel. A two-stage technique based on proper choice of process temperature and required nitriding potential in each stage has been applied in the ASPN process to avoid unnecessary compromises between sufficient thickness of the compound layer, the maximum case hardness and the acceptable nitriding hardness depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号