首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CrB2 thin films possess desirable combinations of properties (high hardness, wear resistance, chemical inertness, high thermal and electrical conductivity), which are attractive for a wide range of potential applications. Pulsed magnetron sputtering (PMS) of loosely-packed blended powder targets has allowed the deposition of stoichiometric chromium diboride coatings. The structure and properties of these coatings were found to be strongly dependent on the deposition process parameters; therefore investigation of the coating structures could explain certain differences between them and provide important information about the characteristics of the deposition process. In this study, characterization of the CrB2 films was performed by scanning and transmission electron microscopy (SEM and TEM) techniques. The microstructures and properties of coatings deposited with different parameters are compared and changes that resulted from the variation of these parameters (particularly the pulsing duty cycle and the substrate biasing conditions) are discussed. The results show that besides the pulsing frequency, the target pulsing duty cycle is an important parameter of the PMS process, which is able to affect such coating properties as hardness, thickness and stress. Coating thickness measurement results suggest more intense bombardment of a growing film by energetic ions at lower values of duty cycle. Structural TEM analysis revealed two extremely different types of coating microstructures, obtained at quite similar substrate biasing conditions, i.e. floating (∼ − 15 V) and negatively biased (− 30 V). It appears that the structures of the coatings deposited at the negatively biased substrate are significantly affected by high-energy ion bombardment, which is a peculiarity of PMS that can modify film growth conditions. These conditions are not present when the substrate is allowed to float.  相似文献   

2.
目的研究脉冲偏压占空比对TiN/TiAlN多层薄膜微观结构和硬度的影响规律。方法利用脉冲偏压电弧离子镀的方法,改变脉冲偏压占空比,在M2高速钢表面制备5种TiN/TiAlN多层薄膜,对比研究了薄膜的微观结构、元素成分、相结构和硬度的变化规律。结果 TiN/TiAlN多层薄膜表面出现了电弧离子镀制备薄膜的典型生长形貌,随着脉冲偏压占空比的增加,薄膜表面的大颗粒数目明显减少。此外,脉冲偏压占空比的增加还引起多层薄膜中Al/Ti原子比的降低。结论 TiN/TiAlN多层薄膜主要以(111)晶面择优取向生长,此外还含有(311),(222)和(200)晶相结构。5种多层薄膜的纳米硬度均在33GPa以上,当脉冲偏压占空比为20%时,可实现超硬薄膜的制备。  相似文献   

3.
Powdered mixtures of titanium and boron can undergo a highly exothermic reaction which is virtually gasless. As a result of this Ti-B mixtures find widespread applications in conventional pyrotechnic delays and heat sources. However, the burning rate of such devices can be affected by particle size distribution, degree of blending and the presence of an inhibiting oxide layer on the surface of the reactants.

Pyrotechnic delays composed of multilayer coatings of titanium and boron have been deposited directly by magnetron sputtering. This is a novel application of such techniques and offers solutions to many of the problems encountered with conventional pyrotechnics.

The deposition and analysis of Ti/B multilayer pyrotechnic coatings deposited by magnetron sputtering are described.  相似文献   


4.
CrN monolayer coating and CrN/WN multilayer coatings were deposited on the silicon (100) substrate by ion-beam assisted deposition process. The bilayer period of these coatings was controlled at 8 nm and 30 nm. The cross-sectional morphology of nanoscaled multilayer coatings was characterized by scanning electron microscopy and transmission electron microscopy. The wear resistance of CrN/WN multilayer coatings and CrN monolayer coating was investigated using a pin-on-disc tribometer. The surface roughness (Ra) of the coatings was evaluated by atomic force microscopy, and that of CrN and WN monolayer coating was 6.7 and 5.9 nm, respectively. The employment of multilayer configuration in CrN/WN coating with bilayer period of 8 nm and 30 nm effectively reduced the surface roughness down to 1.9 and 2.2 nm, respectively. The friction coefficient of CrN monolayer coating and CrN/WN multilayer film with a bilayer period of 30 nm was 0.63 and 0.31, respectively. Owing to the high hardness/elastic modulus ratio, as well as the dense structure and the smooth surface roughness, the CrN/WN multilayer coatings exhibited better wear resistance in the consideration of friction coefficient and the worn surface morphology.  相似文献   

5.
Microstructures of TiN/CrN multilayer coatings deposited on austenite steel (Cr Ni 18 8) by pulsed laser deposition (PLD) are characterized using transmission electron microscopy while their mechanical properties were assessed in a ball-on-disk test. All coatings have the same total thickness of about 1 μm. The individual layers show a highly defective columnar structure, which is characterized by conventional electron microscopy (TEM) as well as by high resolution TEM. These techniques, combined with measurements of the local chemical composition through EDS prove that PLD allows to produce fully separated CrN and TiN layers. The friction, and consequently the wear, are lowered by increasing the total number of layers in the coating.  相似文献   

6.
曹明  赵岚  余健  唐平  许欢  钟珮瑶 《表面技术》2022,51(11):226-234, 243
目的 通过优化原子层沉积工艺获取不同厚度ZnO薄膜,研究ZnO薄膜晶体取向对ZnO?MoS2涂层生长结构的影响,获得具有优异摩擦学性能的ZnO?MoS2/ZnO复合涂层。方法 采用原子层沉积法在不锈钢基体上预沉积不同厚度的ZnO薄膜,再用射频磁控溅射技术继续沉积ZnO?MoS2涂层,制备ZnO?MoS2/ZnO固体润滑复合涂层。结果 X射线衍射分析发现,预沉积ZnO薄膜有诱导后续ZnO?MoS2涂层沉积生长的作用,预沉积100 nm厚ZnO薄膜的ZnO?MoS2/ZnO复合涂层显示出宽化的MoS2 (002)馒头峰,其截面形貌显示为致密的体型结构,获得的摩擦因数最低(0.08),纳米硬度最高(2.33 GPa),硬度/模量比显示该复合涂层的耐磨损性能得到提升;X射线光电子能谱分析结果表明,复合涂层表面游离S与空气中水发生反应程度大约为原子数分数5%,显示复合涂层耐湿性能较好;基于原子层沉积ZnO薄膜生长及其对后续ZnO?MoS2涂层生长的影响分析,提出了ZnO?MoS2/ZnO复合涂层磨损模型,阐明了ZnO薄膜对复合涂层结构及摩擦学性能的影响,并以该模型解释了200 nm厚 ZnO薄膜上沉积ZnO?MoS2涂层出现的摩擦因数由高到低的变化趋势及最终磨损失效现象。结论 合适的原子层沉积制备的ZnO薄膜有利于MoS2 (002)取向生长,可有效提升ZnO?MoS2/ZnO复合涂层的摩擦学性能;控制ZnO薄膜厚度,可实现ZnO薄膜与基底及ZnO?MoS2层间界面之间的优化结合,以制得具有较好摩擦学性能及使用寿命的ZnO?MoS2/ZnO复合涂层。  相似文献   

7.
WC-Co/aluminum multilayer coatings have been developed by using warm spray deposition to improve fracture toughness and damage tolerance of conventional WC-Co coatings and to investigate the effects of ductile layer addition on their fracture properties. Prior to depositing the multilayer coatings, the mechanical properties of three metal coatings of aluminum, copper, and titanium, which were deposited by warm spraying, were evaluated. The aluminum coating showed excellent ductility among them and was selected for use as ductile layers for the multilayer coatings. The fracture behavior of WC-Co/Al coatings was examined by the four-point bending test. The multilayer coatings did not break in a brittle manner after reaching maximum load, but exhibited a plateau as a result of the ductility of the aluminum layers. The fracture behavior was compared with the finite element analysis results, and they showed good agreement in a general trend. It has been concluded that ductile metal reinforcements, by advanced thermal spray techniques such as warm spray deposition, are very effective to enhance the toughness and damage tolerance of sprayed cermet coatings.  相似文献   

8.
采用原子比1:1的Ni和Ti为原料,通过冷喷涂(CS)和低压等离子喷涂(LPPS)制备了Ni-Ti复合涂层,研究喷涂工艺对涂层的组织(孔隙率、相组成和显微组织)和性能(硬度、耐磨性和耐蚀性)的影响。结果表明:两种涂层均未发生明显的氧化,但表现出不同的组织结构。高速碰撞后的颗粒发生严重塑性变形使CS涂层具有低的孔隙率,且XRD未检测到其它的相生成;层片状结构的LPPS涂层内部形成了Ni-Ti金属间化合物相,其表现出高的显微硬度和低的磨损率。此外,LPPS涂层高的腐蚀电位和低的腐蚀电流密度,表明其高的耐蚀性。  相似文献   

9.
The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm(2) increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development.  相似文献   

10.
A comparative analysis of the structural features and tribological properties of multilayer coatings based on refractory metal compounds has been conducted in this review. Features of formation of the electronic structure of the synthesized coatings have been discussed, and the effect of methods and conditions of deposition on changes in the physicomechanical characteristics of nanocrystalline structures based on transition metal nitrides has been shown. Dependences of antifriction properties, corrosion resistance, and thermal stability on the modulation period (Λ) and the number of bilayers in the studied multilayer coatings have been determined. A decrease in the modulation period of individual layers in a coating positively affects the oxidation resistance of the coating, while an increase in the number of interfaces between the layers slows down the diffusion of oxygen atoms deep into the coating and, thereby, increases the protective properties of the multilayer system as a whole. The effect of the droplet component in cathodic-arc coatings on corrosion development mechanisms in corrosive media has been shown. A class of multifunctional multilayer coatings with an adaptive friction mechanism, which is characterized by a change in the properties and structure during tribological tests, has been discussed separately.  相似文献   

11.
The structural, morphological, mechanical and tribological characterization of nanoscaled multilayer TiN/TaN coatings deposited by magnetron sputtering technology were investigated by low angle X-ray diffractometry, high angle X-ray diffractometry, atomic force microscopy, microhardness, pin-on-disc testing and 3-D surface profiler. The results show that the TiN/TaN coatings exhibit good modulation period and sharp interface between TiN and TaN layers. In mutilayered TiN/TaN coatings, TiN layers have cubic structure, but hexagonal structure emerged among TaN layers besides cubic structure as modulation period is beyond 8.5 nm. The mierohardness is affected by modulation period and the maximum hardness value of 31.5 GPa appears at a modulation period of 8.5 rim. The coefficient of friction is high and the wear resistance is improved for TiN/TaN coatings compared with those of TiN coating; the wear mechanism exhibits predominantly ploughing, material transfer and localized spallation.  相似文献   

12.
Au clusters in the size range (1–8 nm), supported on MgO and TiO2, are studied at the atomic scale by High Resolution Transmission Electron Microscopy (HRTEM), in standard conditions and during cycles of gas treatments by environmental HRTEM. Their morphology, the structure of the interface with the substrate and their adhesion energy are deduced from top and profile views, according to the preparation techniques, by atomic deposition in ultra high vacuum or by deposition precipitation in wet conditions.  相似文献   

13.
主要综述了海洋环境抗磨蚀防护涂层及技术的发展现状,对比了喷涂、高能束表面改性、物理气相沉积(Physical vapor deposition,PVD)三种常用技术的优劣势,并归纳了不同涂层在海水磨蚀条件下的磨损率和腐蚀电流密度,发现PVD制备的氮/碳基涂层呈现出更优的耐摩擦防腐蚀性能.进一步对海洋环境氮基与碳基抗磨蚀...  相似文献   

14.
Electrophoretic deposition method has been developed for the fabrication of organic–inorganic composite coatings for biomedical applications. The coatings were obtained as multilayer and functionally graded materials (FGM). Needle-shaped hydroxyapatite (HA) particles were prepared by a wet chemical method and used for the fabrication of chitosan–HA layers. The HA particles in the chitosan matrix showed preferred orientation of c-axis parallel to the substrate surface. Multilayer coatings were obtained, which contained pure chitosan layers and composite HA–chitosan layers. The thickness of the multilayer coatings was in the range of 2–100 μm. The thickness of the individual layers can be varied by the variation of deposition conditions. The feasibility of co-deposition of chitosan and heparin has been demonstrated. The proposed mechanism of heparin deposition is based on the use of non-stoichiometric chitosan–heparin complexes. The deposition yield and coating composition have been studied at various deposition conditions. The addition of heparin to chitosan solutions resulted in increasing deposition rate. Composite chitosan–heparin layers were used for the surface modification of HA–chitosan coatings. Obtained results pave the way for the electrophoretic fabrication of novel FGM coatings for biomedical implants with improved blood compatibility. The coatings were studied by X-ray diffraction analysis, thermogravimetric and differential thermal analysis, electron microscopy, and Fourier transform infrared spectroscopy.  相似文献   

15.
Nanostructured copper/hydrogenated amorphous carbon (a-C:H) multilayer grown in a low base vacuum (1 × 10−3 Torr) system combining plasma-enhanced chemical vapor deposition and sputtering techniques. These nanostructured multilayer were found to exhibit improved electrical, optical, surface and structural properties, compared to that of monolayer a-C:H films. The residual stresses of such multilayer structure were found well below 1 GPa. Scanning electron microscopy and atomic force microscopy results revealed a nanostructured surface morphology and low surface roughnesses values. X-ray photoelectron spectroscopy, secondary ion mass spectroscopy and energy dispersive X-ray analysis confirmed a very small amount of copper in these films. These structures exhibited very high optical transparency in the near infrared region (∼90%) and the optical band gap varied from 1.35 to 1.7 eV. It was noticed that the temperature dependent conductivity improved due to the presence of both copper and the nano-structured morphology.  相似文献   

16.
Hard coatings such as titanium nitride are often porous and therefore not necessarily very corrosion resistant. Possibilities for reducing the film porosity are densification and multilayer structures. These methods are studied in our laboratories at present.

Ion-beam-assisted deposition (IBAD) TiN films were deposited changing the angle between the substrate normal and the ion beam incidence direction.

The films were characterized by transmission electron microscopy, scanning electron microscopy and X-ray diffraction analyses, the hardness was determined by means of a dynamic Vickers hardness tester and the corrosion behaviour was evaluated using current-potential measurements in a multicycle voltammogram mode.

The results are strongly dependent on the changes in the crystal orientation induced by the ion flux under different angles. Careful optimization may lead to coatings with high hardness and excellent corrosion protection potential. These results are compared with Ti/TiN multilayers deposited by IBAD and magnetron sputtering and with a sputtered TiN single layer.  相似文献   


17.
Carbon based multilayer coatings were prepared by plasma assisted chemical vapor deposition (PACVD) using methane (CH4) and hexamethyldisiloxane (HMDSO) or methane and tetramethylsilane (TMS) as precursors. These coatings were deposited in a modified plasma nitriding plant operated at relatively high working pressures of 20 Pa. The multilayer design consisted of a-C:H and a-C:H:Si:O or a-C:H and a-C:H:Si single layers, respectively. The number of single layers and the material of the top layer were varied at constant total coating thicknesses. These multilayer coatings were investigated with regard to their morphology and composition as well as indentation hardness, abrasive wear, lubricant free friction and wetting behavior via contact angle measurements. The multilayer coatings exhibited lower wear rates and higher hardness values than a-C:H:Si:O or a-C:H:Si single layers and lower friction coefficients than pure a-C:H coatings under unlubricated test condition. Utilizing duplex processes, combining plasma nitriding pre-treatment and a following coating deposition, the adhesion of the multilayer coatings on high speed and cold working steel substrates could be considerably improved.  相似文献   

18.
Five nanostructured CrN/ZrN multilayer coatings were deposited periodically by cathodic arc evaporation. The bilayer periods of the CrN/ZrN multilayer coatings were controlled in the range of 5 to 30 nm. The structures and bilayer period of the multilayer coatings were characterized by an X-ray diffractometer. The microstructures of thin films were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Nanoindentation, scratch tests, Daimler–Benz Rockwell-C (HRC-DB) adhesion tests, microhardness and pin-on-disk wear tests were used to evaluate the hardness, adhesion, indentation toughness and tribological properties of thin films, respectively. It was found that the hardness and tribological properties were strongly influenced by the bilayer period of the CrN/ZrN multilayer coatings. An optimal combination of mechanical properties and excellent tribological behavior was found for a coating with a critical bilayer period of 30 nm.  相似文献   

19.
The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100), and the microstructures, mechanical and tribological properties were investigated from 25 to 700 °C. The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface. The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface, and both coatings can effectively restrict the initiation and propagation of microcracks. Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases, but their wear rates reveal a drastic increase. The phase composition of the worn area of both coatings was investigated, which indicates that a smooth Ag, Magnéli phase (V2O5) and bimetallic oxides (Ag3VO4 and AgVO3) can be responsible to the excellent lubricity of both coatings. To sum up, the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase, indicating that they have great potential in solving the problem of friction and wear of mechanical parts.  相似文献   

20.
NdFeB磁性材料化学镀Ni-Cu-P合金沉积过程分析   总被引:4,自引:1,他引:3  
王憨鹰  陈焕铭  徐靖  孙安 《表面技术》2008,37(6):12-13,17
通过SEM观察Ni-Cu-P合金沉积过程的形貌,提出了Ni-Cu-P非晶态合金镀层形核与长大过程的沉积模型.结果表明:初期沉积过程具有明显的择优倾向和不均匀性,原子并非以单个原子的形式沉积于基体表面,而是还原后的原子在固-液界面处首先形成原子团,然后在基体表面的高能量区域优先沉积,并开始形核且以不规则形态长大;在施镀后期,随着P含量的不断增加,镀层形貌逐渐由不规则形态变为规则胞状形态,直至形成光滑平整的非晶态镀层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号