首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of protein secondary structure especially the regions of β-sheets involves long-range interactions between amino acids. We propose a novel recurrent neural network architecture called segmented-memory recurrent neural network (SMRNN) and present experimental results showing that SMRNN outperforms conventional recurrent neural networks on long-term dependency problems. In order to capture long-term dependencies in protein sequences for secondary structure prediction, we develop a predictor based on bidirectional segmented-memory recurrent neural network (BSMRNN), which is a noncausal generalization of SMRNN. In comparison with the existing predictor based on bidirectional recurrent neural network (BRNN), the BSMRNN predictor can improve prediction performance especially the recognition accuracy of β-sheets.  相似文献   

2.
《Information Fusion》2008,9(1):41-55
Ensemble methods for classification and regression have focused a great deal of attention in recent years. They have shown, both theoretically and empirically, that they are able to perform substantially better than single models in a wide range of tasks. We have adapted an ensemble method to the problem of predicting future values of time series using recurrent neural networks (RNNs) as base learners. The improvement is made by combining a large number of RNNs, each of which is generated by training on a different set of examples. This algorithm is based on the boosting algorithm where difficult points of the time series are concentrated on during the learning process however, unlike the original algorithm, we introduce a new parameter for tuning the boosting influence on available examples. We test our boosting algorithm for RNNs on single-step-ahead and multi-step-ahead prediction problems. The results are then compared to other regression methods, including those of different local approaches. The overall results obtained through our ensemble method are more accurate than those obtained through the standard method, backpropagation through time, on these datasets and perform significantly better even when long-range dependencies play an important role.  相似文献   

3.
Learning long-term dependencies in NARX recurrent neural networks   总被引:7,自引:0,他引:7  
It has previously been shown that gradient-descent learning algorithms for recurrent neural networks can perform poorly on tasks that involve long-term dependencies, i.e. those problems for which the desired output depends on inputs presented at times far in the past. We show that the long-term dependencies problem is lessened for a class of architectures called nonlinear autoregressive models with exogenous (NARX) recurrent neural networks, which have powerful representational capabilities. We have previously reported that gradient descent learning can be more effective in NARX networks than in recurrent neural network architectures that have "hidden states" on problems including grammatical inference and nonlinear system identification. Typically, the network converges much faster and generalizes better than other networks. The results in this paper are consistent with this phenomenon. We present some experimental results which show that NARX networks can often retain information for two to three times as long as conventional recurrent neural networks. We show that although NARX networks do not circumvent the problem of long-term dependencies, they can greatly improve performance on long-term dependency problems. We also describe in detail some of the assumptions regarding what it means to latch information robustly and suggest possible ways to loosen these assumptions.  相似文献   

4.
A major drawback of artificial neural networks (ANNs) is their black-box character. This is especially true for recurrent neural networks (RNNs) because of their intricate feedback connections. In particular, given a problem and some initial information concerning its solution, it is not at all obvious how to design an RNN that is suitable for solving this problem. In this paper, we consider a fuzzy rule base with a special structure, referred to as the fuzzy all-permutations rule base (FARB). Inferring the FARB yields an input–output (IO) mapping that is mathematically equivalent to that of an RNN. We use this equivalence to develop two new knowledge-based design methods for RNNs. The first method, referred to as the direct approach, is based on stating the desired functioning of the RNN in terms of several sets of symbolic rules, each one corresponding to a subnetwork. Each set is then transformed into a suitable FARB. The second method is based on first using the direct approach to design a library of simple modules, such as counters or comparators, and realize them using RNNs. Once designed, the correctness of each RNN can be verified. Then, the initial design problem is solved by using these basic modules as building blocks. This yields a modular and systematic approach for knowledge-based design of RNNs. We demonstrate the efficiency of these approaches by designing RNNs that recognize both regular and nonregular formal languages.   相似文献   

5.
In this paper, we present nonmonotone variants of the Levenberg–Marquardt (LM) method for training recurrent neural networks (RNNs). These methods inherit the benefits of previously developed LM with momentum algorithms and are equipped with nonmonotone criteria, allowing temporal increase in training errors, and an adaptive scheme for tuning the size of the nonmonotone slide window. The proposed algorithms are applied to training RNNs of various sizes and architectures in symbolic sequence-processing problems. Experiments show that the proposed nonmonotone learning algorithms train more effectively RNNs for sequence processing than the original monotone methods.  相似文献   

6.
In this paper,we present a technique for ensuring the stability of a large class of adaptively controlled systems.We combine IQC models of both the controlled system and the controller with a method of filtering control parameter updates to ensure stable behavior of the controlled system under adaptation of the controller.We present a specific application to a system that uses recurrent neural networks adapted via reinforcement learning techniques.The work presented extends earlier works on stable reinforcement learning with neural networks.Specifically,we apply an improved IQC analysis for RNNs with time-varying weights and evaluate the approach on more complex control system.  相似文献   

7.
刘建伟  宋志妍 《控制与决策》2022,37(11):2753-2768
循环神经网络是神经网络序列模型的主要实现形式,近几年得到迅速发展,其是机器翻译、机器问题回答、序列视频分析的标准处理手段,也是对于手写体自动合成、语音处理和图像生成等问题的主流建模手段.鉴于此,循环神经网络的各分支按照网络结构进行详细分类,大致分为3大类:一是衍生循环神经网络,这类网络是基于基本RNNs模型的结构衍生变体,即对RNNs的内部结构进行修改;二是组合循环神经网络,这类网络将其他一些经典的网络模型或结构与第一类衍生循环神经网络进行组合,得到更好的模型效果,是一种非常有效的手段;三是混合循环神经网络,这类网络模型既有不同网络模型的组合,又在RNNs内部结构上进行修改,是同属于前两类网络分类的结构.为了更加深入地理解循环神经网络,进一步介绍与循环神经网络经常混为一谈的递归神经网络结构以及递归神经网络与循环神经网络的区别和联系.在详略描述上述模型的应用背景、网络结构以及模型变种后,对各个模型的特点进行总结和比较,并对循环神经网络模型进行展望和总结.  相似文献   

8.
This paper identifies a problem of significance for approaches to adaptive autonomous agent research seeking to go beyond reactive behaviour without resorting to hybrid solutions. The feasibility of recurrent neural network solutions are discussed and compared in the light of experiments designed to test ability to handle long-term temporal dependencies, in a more situated context than hitherto. It is concluded that a general-purpose recurrent network with some processing enhancements can begin to fulfil the requirements of this non-trivial problem.  相似文献   

9.
《Advanced Robotics》2013,27(13-14):1521-1537
Tying suture knots is a time-consuming task performed frequently during minimally invasive surgery (MIS). Automating this task could greatly reduce total surgery time for patients. Current solutions to this problem replay manually programmed trajectories, but a more general and robust approach is to use supervised machine learning to smooth surgeon-given training trajectories and generalize from them. Since knot tying generally requires a controller with internal memory to distinguish between identical inputs that require different actions at different points along a trajectory, it would be impossible to teach the system using traditional feedforward neural nets or support vector machines. Instead we exploit more powerful, recurrent neural networks (RNNs) with adaptive internal states. Results obtained using long short-term memory RNNs trained by the recent Evolino algorithm show that this approach can significantly increase the efficiency of suture knot tying in MIS over preprogrammed control.  相似文献   

10.
Recursive Bayesian Recurrent Neural Networks for Time-Series Modeling   总被引:3,自引:0,他引:3  
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg–Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.   相似文献   

11.
In order to conveniently analyze the stability of various discrete-time recurrent neural networks (RNNs), including bidirectional associative memory, Hopfield, cellular neural network, Cohen-Grossberg neural network, and recurrent multiplayer perceptrons, etc., the novel neural network model, named standard neural network model (SNNM) is advanced to describe this class of discrete-time RNNs. The SNNM is the interconnection of a linear dynamic system and a bounded static nonlinear operator. By combining Lyapunov functional with S-Procedure, some useful criteria of global asymptotic stability for the discrete-time SNNMs are derived, whose conditions are formulated as linear matrix inequalities. Most delayed (or non-delayed) RNNs can be transformed into the SNNMs to be stability analyzed in a unified way. Some application examples of the SNNMs to the stability analysis of the discrete-time RNNs shows that the SNNMs make the stability conditions of the RNNs easily verified.  相似文献   

12.
Reservoir computing approaches to recurrent neural network training   总被引:5,自引:0,他引:5  
Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.  相似文献   

13.
We study a particular class of n-node recurrent neural networks (RNNs). In the 3-node case we use monotone dynamical systems theory to show, for a well-defined set of parameters, that, generically, every orbit of the RNN is asymptotic to a periodic orbit. We then investigate whether RNNs of this class can adapt their internal parameters so as to "learn" and then replicate autonomously (in feedback) certain external periodic signals. Our learning algorithm is similar to the identification algorithms in adaptive control theory. The main feature of the algorithm is that global exponential convergence of parameters is guaranteed. We also obtain partial convergence results in the n-node case.  相似文献   

14.
Previous work on learning regular languages from exemplary training sequences showed that long short-term memory (LSTM) outperforms traditional recurrent neural networks (RNNs). We demonstrate LSTMs superior performance on context-free language benchmarks for RNNs, and show that it works even better than previous hardwired or highly specialized architectures. To the best of our knowledge, LSTM variants are also the first RNNs to learn a simple context-sensitive language, namely a(n)b(n)c(n).  相似文献   

15.
Kimura M 《Neural computation》2002,14(12):2981-2996
This article extends previous mathematical studies on elucidating the redundancy for describing functions by feedforward neural networks (FNNs) to the elucidation of redundancy for describing dynamical systems (DSs) by continuous-time recurrent neural networks (RNNs). In order to approximate a DS on R(n) using an RNN with n visible units, an n-dimensional affine neural dynamical system (A-NDS) can be used as the DS actually produced by the above RNN under an affine map from its visible state-space R(n) to its hidden state-space. Therefore, we consider the problem of clarifying the redundancy for describing A-NDSs by RNNs and affine maps. We clarify to what extent a pair of an RNN and an affine map is uniquely determined by its corresponding A-NDS and also give a nonredundant sufficient search set for the DS approximation problem based on A-NDS.  相似文献   

16.
Stability analysis of discrete-time recurrent neural networks   总被引:10,自引:0,他引:10  
We address the problem of global Lyapunov stability of discrete-time recurrent neural networks (RNNs) in the unforced (unperturbed) setting. It is assumed that network weights are fixed to some values, for example, those attained after training. Based on classical results of the theory of absolute stability, we propose a new approach for the stability analysis of RNNs with sector-type monotone nonlinearities and nonzero biases. We devise a simple state-space transformation to convert the original RNN equations to a form suitable for our stability analysis. We then present appropriate linear matrix inequalities (LMIs) to be solved to determine whether the system under study is globally exponentially stable. Unlike previous treatments, our approach readily permits one to account for non-zero biases usually present in RNNs for improved approximation capabilities. We show how recent results of others on the stability analysis of RNNs can be interpreted as special cases within our approach. We illustrate how to use our approach with examples. Though illustrated on the stability analysis of recurrent multilayer perceptrons, the approach proposed can also be applied to other forms of time-lagged RNNs.  相似文献   

17.
Training of recurrent neural networks (RNNs) introduces considerable computational complexities due to the need for gradient evaluations. How to get fast convergence speed and low computational complexity remains a challenging and open topic. Besides, the transient response of learning process of RNNs is a critical issue, especially for online applications. Conventional RNN training algorithms such as the backpropagation through time and real-time recurrent learning have not adequately satisfied these requirements because they often suffer from slow convergence speed. If a large learning rate is chosen to improve performance, the training process may become unstable in terms of weight divergence. In this paper, a novel training algorithm of RNN, named robust recurrent simultaneous perturbation stochastic approximation (RRSPSA), is developed with a specially designed recurrent hybrid adaptive parameter and adaptive learning rates. RRSPSA is a powerful novel twin-engine simultaneous perturbation stochastic approximation (SPSA) type of RNN training algorithm. It utilizes three specially designed adaptive parameters to maximize training speed for a recurrent training signal while exhibiting certain weight convergence properties with only two objective function measurements as the original SPSA algorithm. The RRSPSA is proved with guaranteed weight convergence and system stability in the sense of Lyapunov function. Computer simulations were carried out to demonstrate applicability of the theoretical results.  相似文献   

18.
In this paper we consider the problem of reinforcement learning in a dynamically changing environment. In this context, we study the problem of adaptive control of finite-state Markov chains with a finite number of controls. The transition and payoff structures are unknown. The objective is to find an optimal policy which maximizes the expected total discounted payoff over the infinite horizon. A stochastic neural network model is suggested for the controller. The parameters of the neural net, which determine a random control strategy, are updated at each instant using a simple learning scheme. This learning scheme involves estimation of some relevant parameters using an adaptive critic. It is proved that the controller asymptotically chooses an optimal action in each state of the Markov chain with a high probability  相似文献   

19.
Training recurrent networks by Evolino   总被引:1,自引:0,他引:1  
In recent years, gradient-based LSTM recurrent neural networks (RNNs) solved many previously RNN-unlearnable tasks. Sometimes, however, gradient information is of little use for training RNNs, due to numerous local minima. For such cases, we present a novel method: EVOlution of systems with LINear Outputs (Evolino). Evolino evolves weights to the nonlinear, hidden nodes of RNNs while computing optimal linear mappings from hidden state to output, using methods such as pseudo-inverse-based linear regression. If we instead use quadratic programming to maximize the margin, we obtain the first evolutionary recurrent support vector machines. We show that Evolino-based LSTM can solve tasks that Echo State nets (Jaeger, 2004a) cannot and achieves higher accuracy in certain continuous function generation tasks than conventional gradient descent RNNs, including gradient-based LSTM.  相似文献   

20.
赵杰  张春元  刘超  周辉  欧宜贵  宋淇 《自动化学报》2022,48(8):2050-2061
针对循环神经网络(Recurrent neural networks, RNNs)一阶优化算法学习效率不高和二阶优化算法时空开销过大,提出一种新的迷你批递归最小二乘优化算法.所提算法采用非激活线性输出误差替代传统的激活输出误差反向传播,并结合加权线性最小二乘目标函数关于隐藏层线性输出的等效梯度,逐层导出RNNs参数的迷你批递归最小二乘解.相较随机梯度下降算法,所提算法只在RNNs的隐藏层和输出层分别增加了一个协方差矩阵,其时间复杂度和空间复杂度仅为随机梯度下降算法的3倍左右.此外,本文还就所提算法的遗忘因子自适应问题和过拟合问题分别给出一种解决办法.仿真结果表明,无论是对序列数据的分类问题还是预测问题,所提算法的收敛速度要优于现有主流一阶优化算法,而且在超参数的设置上具有较好的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号