首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.  相似文献   

2.
There are many application fields for fast neutrons. The main application fields of the fast neutrons are accelerator-driven sub-critical systems (ADS) and fusion–fission (hybrid) reactor systems for fission energy production. Thorium (Th) and uranium (U) are nuclear fuels in fusion–fission (hybrid) reactor systems and bismuth (Bi) is also the target nucleus in the ADS reactor systems. In this study, neutron production cross sections produced by (d, xn) reactions for spallation targets such as 209Bi, 232Th, 235U and 238U have been investigated. New evaluated hybrid model and geometry dependent hybrid model have been used to calculate the pre-equilibrium neutron production cross sections. For the reaction equilibrium component, Weisskopf–Ewing model calculations have been preferred. The obtained results have been discussed and compared with the available experimental data and found in agreement with each other.  相似文献   

3.
4.
5.
6.
We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235U, 238U and 239Pu. The results are from historical measurements made in the 1950s–1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235U and 238U, but our FPYs are generally higher for 239Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239Pu fission cross section is now known to be 15–20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.  相似文献   

7.
The periods of spontaneous fission were determined for urnaium and americium by means of fission-fragment detectors in the form of glass plates; these were: (1.2±0.3)·1017 years for U233, (3.5±0.9)·1017 years for U235, (3.3±0.3)·1013 years for Am243. An attempt was made to systematize experimental data on the spontaneous-fission periods of odd-even and even-odd nuclei.Translated from Atomnaya Énergiya, Vol. 20, No. 4, pp. 315–317, April, 1966.  相似文献   

8.
花岗岩作为高放废物处置库的地质屏障,其所含裂隙形成大量"通道"为废物在地下水运移提供条件,研究其迁移规律可为管控高放废物等问题提供理论数据。试验使用自制花岗岩裂隙溶质迁移试验设备,进行了以Na、Cu、U为示踪剂的迁移试验,得出以下结论:(1)裂隙中各示踪剂随迁移距离增加,相对浓度峰值逐渐减小,峰面积逐渐增大,时间-相对浓度曲线"缩首"现象减弱且"拖尾"现象明显;(2)对比三种示踪剂迁移曲线发现,曲线"缩首"现象程度UNaCu,曲线"拖尾"现象程度CuNaU;推测出花岗岩对三种示踪剂阻滞作用CuNaU;(3)使用配线法分别求出Na、Cu、U的纵向弥散度分别为:0.084 2~0.107 7m、0.092 1~0.116 2m、0.095 8~0.133 7m;横向弥散度为:0.000 77m、0.000 66m、0.000 30m。  相似文献   

9.
10.
11.
12.
Listed here are the orbital energies, total energies, and ionization energies for ground-state configurations of uranium ions U I to U XCII. These values have been computed with the relativistic Dirac-Fock code due to Desclaux. The ground-state electronic configuration for each ion is determined by comparing the total energies of neighboring configurations and selecting the one with the minimum value. The ionization energies are obtained by building differences between the total energies of the respective ions with and without the valence electron. The term values of the uranium ions have been assigned through comparison with the term values of ionized atoms with the same configuration and the same number of electrons as given in the tables of Moore. The tables presented here should find application in the calculation of opacities in uranium plasmas.  相似文献   

13.
The thermal conductivities of near-stoichiometric (U, Ce)C and (U, Pu, Ce)C solid solutions containing CeC up to 10 mol% were determined in the temperature range from 740 to 1600 K by the laser flash method. The thermal conductivity decreased with the cerium content in the solid solutions. The electrical resistivities were also measured for the purpose of analyzing the heat conduction mechanism. It was found that the decrease of electronic heat conduction caused by the addition of cerium resulted in decreasing the thermal conductivities of (U, Ce)C and (U, Pu, Ce)C compared with UC and (U, Pu)C.  相似文献   

14.
We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo where the present results are about 4%-relative higher for neutrons incident on 239Pu and 235U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the 147Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.  相似文献   

15.
16.
17.
18.
19.
20.
利用自制花岗岩水平单裂隙实验装置与有机玻璃裂隙对照装置,采用脉冲注入法,研究了饱水单裂隙中铀(Ⅵ)和钍(Ⅳ)混合元素作为溶质的运移情况。获得了两个元素浓度随时间的变化曲线及核素的运移参数,得到以下结论:(1)元素在花岗岩单裂隙中的运移能力与裂隙中水流流速有关,流速越小,峰现时间越晚,元素的相对浓度越小,拖尾现象越明显;(2)花岗岩单裂隙中,等流速、等运移距离条件下,钍的相对浓度小于铀,并且随着流速减小和运移距离增长,差异逐渐增大,表明铀在花岗岩中的运移能力强于钍,主要与元素化学性质有关;(3)对比空白裂隙,元素在花岗岩单裂隙中的穿透曲线有明显的峰值削弱、峰现时间滞后和拖尾现象,表明花岗岩对铀、钍运移的阻滞效果十分理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号