首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
纳米CaCO3复合微粒对ABS性能的影响   总被引:9,自引:0,他引:9  
将苯乙烯(S t)、丙烯酸丁酯(BA)双单体在纳米碳酸钙粒子存在下的水相悬浮液中进行无皂乳液聚合,制备出纳米碳酸钙聚合物复合微粒,研究了复合微粒对改性纳米C aCO3/ABS复合材料力学性能的影响及增韧机理。结果表明,复合微粒以纳米级均匀分散在基体中,与基体间形成良好的柔性界面层;复合材料的断面产生了大量的滑移和褶皱,起到了吸收和分散机械力的作用。当单体的配比和种类适当时,复合微粒对ABS有很好的改性作用,其填充量为3份(质量)时,复合材料单缺口冲击强度达到40.6kJ/m2,比纯ABS提高24.5%,拉伸强度基本不变。  相似文献   

2.
纳米CaCO3复合微粒增韧增强PC/ABS合金   总被引:2,自引:0,他引:2  
经甲基丙烯酸甲酯和丙烯酸丁酯双单体聚合包覆的纳米碳酸钙形成了核壳结构增韧复合微粒。在双螺杆挤出机中采用二次挤出法制备出PC/ABS/纳米碳酸钙复合材料。研究纳米碳酸钙复合微粒对PC/ABS合金力学性能的影响表明:添加适量纳米CaCO3复合微粒,PC/ABS合金的缺口冲击强度和拉伸强度都得到提高。纳米CaCO3复合微粒具有无机纳米颗粒和弹性体双重协同增韧的作用,其表面的聚合物分子链与基体树脂起到嵌段增容作用。  相似文献   

3.
纳米CaCO3/ACR复合物的制备及在PVC改性中的应用   总被引:3,自引:0,他引:3  
采用种子乳液聚合法合成了具有核壳结构的纳米CaCO3/ACR复合胶乳.将其与PVC进行共混,考察了不同界面结构对复合材料力学性能的影响,并用TEM、SEM对复合粒子分散情况及共混物断面形态进行了考察.结果表明,纳米复合粒子在PVC基质中达到了纳米级分散;用钛酸酯处理的纳米CaCO3优于用硬脂酸处理的纳米CaCO3的改性效果;核层与壳层单体比、壳层单体比都存在最佳值.  相似文献   

4.
采用种子乳液聚合法合成了具有核壳结构的纳米C aCO3/ACR复合胶乳。将其与PVC进行共混,考察了不同界面结构对复合材料力学性能的影响,并用TEM、SEM对复合粒子分散情况及共混物断面形态进行了考察。结果表明,纳米复合粒子在PVC基质中达到了纳米级分散;用钛酸酯处理的纳米C aCO3优于用硬脂酸处理的纳米C aCO3的改性效果;核层与壳层单体比、壳层单体比都存在最佳值。  相似文献   

5.
研究了具有不同粒子形态的无机填料(球形的纳米二氧化硅、片状的滑石粉和纤维状的玻璃纤维),以及不同粒径的碳酸钙(纳米碳酸钙、超细碳酸钙)对聚氯乙烯(PVC)/氯化聚乙烯(CPE)/导电炭黑(CB)复合材料导电性能的影响。电性能测试和扫描电镜形态结构分析结果表明,添加纤维状填料比球形和片状填料更有利于复合材料导电性能的保持;粒径较小的纳米碳酸钙对复合材料的导电性能影响较小。当炭黑含量为12phr时,添加15phr纳米碳酸钙后复合材料的电阻率仅为6.04×106Ω.cm。  相似文献   

6.
核壳结构纳米复合颗粒因其特殊的结构而呈现出独特的物理、化学性能,具有广阔的应用前景。介绍核壳纳米复合材料的2类制备方法,综述了乳液聚合法制备核壳结构纳米微球的研究近况,主要分析了传统乳液聚合、微乳液聚合、细乳液聚合以及无皂乳液聚合等制备技术,展望了乳液聚合法制备核壳结构纳米微球的发展趋势。  相似文献   

7.
通过对纳米碳酸钙表面改性及其对聚氯乙烯(PVC)/氯乙烯-丙烯酸乙酯共聚物(VC/EA)/纳米碳酸钙(n-CaCO3)三元复合体系加工成型工艺等的考察,研制了(PVC)/(VC/EA)/n-CaCO3复合材料,并对其力学性能进行了研究.结果表明:利用将VC/EA共聚物与纳米CaCO3先制成复合母粒,再与PVC进行共混的二次分散成型工艺,有利于纳米CaCO3在基体中的分散;当复合母粒中VC/EA与n-CaCO3的比例为2∶3(质量分数比,下同)时,材料的力学性能最佳,n-CaCO3对材料具有补强作用,并且n-CaCO3和VC/EA能协同增韧PVC,使材料的冲击强度得到大幅度提高,当PVC和复合母粒比例为100/20时,材料的冲击强度达到38.2 kJ·m-2,是纯PVC(PVC的冲击强度为4.9 kJ·m-2)的7.8倍,拉伸强度仍高达50.8MPa.  相似文献   

8.
以纳米CaCO3浆料和丁苯胶乳、 羧基丁苯胶乳、 丁腈胶乳为原料, 采用共凝聚法分别制备了三种纳米CaCO3-粉末橡胶复合粒子, 并制备了三种纳米CaCO3-粉末橡胶/聚氯乙烯(PVC)复合材料, 系统研究了复合粒子含量对PVC力学性能的影响, 并探讨了复合粒子的增强增韧机制。结果表明: 复合粒子在PVC树脂中分散均匀, 复合粒子中的纳米CaCO3粒子以"裸露态"和橡胶"包裹态"两种形式存在于PVC基体中; 三种复合粒子均能显著提高PVC的缺口冲击强度, 纳米CaCO3-粉末丁腈橡胶(CaCO3-NBR)能同时起到增强增韧的效果, 而纳米CaCO3-粉末丁苯橡胶(CaCO3-SBR)在提高缺口冲击强度的同时也损失了PVC原有的刚性, 使其弯曲模量和拉伸强度大幅度降低, 纳米CaCO3-粉末羧基丁苯橡胶(CaCO3-X-SBR)的改性效果鉴于前两者之间; 复合粒子与PVC基体的相容性是影响复合粒子增强增韧改性效果的决定性因素, 相容性好的复合粒子能同时起到增强增韧的效果。  相似文献   

9.
采用固相剪切碾磨方法成功制备了聚氯乙烯(PVC)-高岭土复合粉体,实现了高岭土的片层剥离和在PVC基体中的纳米分散及对PVC的同步增强增韧。通过X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征了PVC-高岭土纳米复合材料的结构,研究了其力学性能。结果表明,30次碾磨,高岭土的特征衍射峰几乎消失,高岭土以约30 nm片层厚度均匀分散于PVC基体,径厚比超过10。与简单填充复合方法相比,固相剪切碾磨技术制备的PVC/高岭土纳米复合材料的力学性能有较大提高。在高岭土质量分数为4%时,断裂伸长率由87.3%提高到274.6%,提高了214.7%;拉伸强度由47.7 MPa提高到54.0 MPa。  相似文献   

10.
同步采用无皂乳液聚合法和溶胶-凝胶法制备了聚丙烯酸酯/纳米SiO2复合材料,通过TEM、力学性能、DSC、TG和XRD等检测手段研究了不同有机硅烷偶联剂对聚丙烯酸酯/纳米SiO2复合材料性能的影响.结果表明,分别采用3-甲基丙烯酸氧丙基三甲氧基硅烷(MEMO)和乙烯基三甲氧基硅烷(VTMO)制备的纳米复合材料,力学性能随其用量的增加而同步增强增韧;TEM结果表明,采用MEMO和VTMO制备的聚丙烯酸酯/纳米SiO2复合材料中的纳米SiO2的粒径约20nm,且分布均匀;热性能结果表明,采用乙烯基三乙氧基硅烷(VTEO)制备的纳米复合材料的玻璃化温度(-8.1℃)和热裂解温度(350℃)最高;XRD结果表明,有机硅烷偶联剂的加入降低了纳米复合材料的结晶度.  相似文献   

11.
通过乳液聚合反应,在经γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPTMS)预处理的纳米CaCO3表面实现聚合物包覆,讨论了乳化剂用量、投料方式、CaCO3与单体投加比、乳液体系pH值等因素对聚合过程的影响。IR分析发现,产物经甲苯抽提后,CaCO3表面仍有聚合物存在,说明除物理吸附外,部分聚合物以化学键合方式包覆在CaCO3表面,形成复合粒子;接触角测定和沉降体积方法研究表明,较之未处理CaCO3,复合粒子表面极性和表面张力得到显著降低,在非极性溶剂中的润湿性有所提高。  相似文献   

12.
针形纳米碳酸钙的表面改性及在PVC中的应用   总被引:1,自引:0,他引:1  
对自制直径为30 nm~40 nm,长径比10~15的针形纳米碳酸钙进行表面改性后,将其应用于聚氯乙烯(PVC)的改性研究中,考察了改性针形纳米碳酸钙/PVC复合材料的力学性能。与未填充的PVC相比,纳米碳酸钙填充量为2.69%(体积分数)时,复合材料的拉伸强度、冲击强度和断裂伸长率分别提高了5.7%、11.3%和33.7%。改性后的纳米碳酸钙与PVC之间的界面作用与未改性碳酸钙相比有所减弱。扫描电镜照片(SEM)显示,添加了改性针形碳酸钙的聚氯乙烯断裂为韧性断裂,冲击断面呈现明显的拉丝现象。  相似文献   

13.
应用脂肪酸、钛酸酯偶联剂分别对纳米级碳酸钙(Nano-CaCO3)进行表面处理,并用熔融共混法制备PP/Nano-CaCO3复合材料.在室温条件下,测量PP/Nano-CaCO3复合材料的V型缺口冲击强度.采用投影覆盖法测算复合材料的冲击断口表面分维,考察断口表面分维与复合材料冲击强度的关系.结果表明,断口表面分维在2.3673~2.4120之间,相关系数均大于0.95,强的相关性说明断口表面分形特性显著;复合体系冲击强度与断口表面分维之间近似呈指数函数关系.  相似文献   

14.
The effect of blending routes on the morphology and properties of Polyamide-6 (PA-6)/nano-CaCO3/Maleated ethylene-octane copolymer (MA-POE) ternary composite was analyzed using static mechanical test (DMA), TEM (transmission electronic microscope) and SEM (scanning electron microscope). It was found that MA-POE, as an impact modifier, had a profound effect upon the toughness of the PA-6/nano-CaCO3 composite. In particular, by adopting two-stage blending route, the microstructure of the ternary composites turned to core-shell structure, and the impact toughness was improved greatly. At the same time, tensile strength and dynamic storage modulus (E1) were higher than those with one-stage blending route processed ternary composite. The results suggest that blending routes may improve the properties of PA-6/nano-CaCO3/MA-POE ternary composites.  相似文献   

15.
制备了纳米CaCO3/聚丙烯、聚对苯二甲酸乙二酯(PET)短纤维/聚丙烯、CaCO3/PET短纤维/聚丙烯复合材料。分别测试了复合材料的力学性能,结果发现,与纳米CaCO3/聚丙烯、PET短纤维/聚丙烯两相复合材料相比,三相复合材料的力学性能尤其是冲击性能有明显的提高。采用X射线衍射(XRD)、动态力学分析(DMA)、电子扫描(SEM)系统研究了复合材料的增强机理,结果发现,在三相复合材料中,纳米CaCO3的加入明显提高了PET短纤维与聚丙烯基体界面之间的作用力和相容性,同时纳米CaCO3与PET短纤维的协同效应诱导了聚丙烯β晶的生成。  相似文献   

16.
AA改性纳米CaCO3/聚丙烯的力学性能   总被引:4,自引:1,他引:3  
用熔融挤出法制备了丙烯酸(AA)改性纳米CaCO3/PP母料及复合材料,系统研究了两种粒径的纳米CaCO3、单体AA和引发剂DCP的用量,以及制备母料的不同基体对纳米CaCO3/PP复合材料力学性能的影响。结果表明纳米CaCO3/PP复合材料的力学性能高于微米CaCO3/PP复合材料,纳米CaCO3对PP有增强增韧作用。在制备母料过程中加入AA,有助于进一步提高纳米CaCO3/PP复合材料的力学性能。加入少量DCP也有利于提高复合材料的力学性能。制备母料的基体为粉状PP的力学性能高于粒状PP。  相似文献   

17.
详细研究了聚氯乙烯(PVC)、氯化聚乙烯(CPE)和纳米碳酸钙(Nano-CaCO3)的三元复合体系的加工工艺和组成变化与力学性能之间的关系。研究表明:如果先将CPE等弹性体和纳米CaCO3制成母粒,然后再与PVC进行混合,有利于纳米粒子在基体中的分散,在复合体系中,纳米CaCO3和CPE达到了协同增韧PVC的作用,同时,纳米CaCO3具有补强作用,且当母粒的组成为CPE/纳米CaCO3=1∶2时,对PVC改性效果最佳。   相似文献   

18.
采用原位聚合法制备了聚醋酸乙烯/纳米SiO2复合乳液,对乳胶粒的形态、复合乳液的力学性能进行了表征.结果表明,复合乳液力学性能有较大提高、微观形态更趋复杂,并对其机理进行了一定的分析.  相似文献   

19.
在水介质中,超声作用下用油酸对纳米碳酸钙进行表面修饰,再以微悬浮原位聚合法用PMM A进行接枝包覆,成功制备了PMM A/C aCO3复合粒子。借助透射电镜(TEM)、红外光谱(FT-IR)、热失重(TG)等分析手段对复合粒子的形态结构进行了表征。实验结果表明,油酸可通过羧酸盐的形式吸附于碳酸钙粒子表面,一定量PMM A通过油酸分子的不饱和双键接枝于碳酸钙粒子表面。将所得PMM A/C aCO3复合粒子与PVC共混制得PVC/PMM A/C aCO3复合材料。复合材料的TEM照片表明,C aCO3粒子非常均匀地分散在PVC基体中,两相界面模糊。随着PMM A/C aCO3纳米复合粒子用量的增加,复合材料的强度和韧性同时提高。当复合粒子用量高于12%时,复合材料的冲击强度可提高3倍,而拉伸强度下降很少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号