首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Novel pure and cobalt-doped magnesium borate crystals (Mg3B2O6) have been grown successfully by the Czochralski technique for the first time. Crystal growth, X-ray powder diffraction (XRD) analysis, absorption spectrum, fluorescence spectrum as well as fluorescence decay curve of Co2+:Mg3B2O6 (MBO) were described. From the absorption peaks for the octahedral Co2+ ions, the crystal-field parameter Dq and the Racah parameter B were estimated to be 943.3 cm−1 and 821.6 cm−1, respectively. The fluorescence lifetime of the transition 4T1(4P) → 4T2 centered at 717 nm was measured to be 9.68 ms.  相似文献   

2.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

3.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


4.
Sejoon Lee  Yoon Shon  Deuk Young Kim   《Thin solid films》2008,516(15):4889-4893
The temperature-dependent photoluminescence (PL) properties of the As-doped (Zn0.93Mn0.07)O layer, which showed the stable p-type conductivity with carrier concentration of  1018 cm− 3 and carrier mobility of  10 cm2 V− 1 s− 1, were investigated. From fitting of the Bose–Einstein approximation using extracted emission parameters from temperature-dependent PL spectra, it was found that the interaction between exciton and phonon in p-(Zn0.93Mn0.07)O:As is higher than that in host material ZnO. This result was confirmed as resulting from the increase of disorder-activated phonon scattering which is attributed to the increase of free carriers donated from implanted As dopants.  相似文献   

5.
FeS2-thin films with good crystallinity were synthesized by a simple method which consists of sulphuration, under vacuum, of amorphous iron oxide thin films pre-deposited by spray pyrolysis of FeCl3·6H2O (0.03 M)-based aqueous solution onto glass substrates heated at 350 °C. At optimum sulphuration temperature (450 °C) and duration (6 h), black green layers having granular structure and high absorption coefficient (5.104 cm−1) were obtained. The study of the electrical properties of the as-prepared films vs. the temperature variations showed three temperature domain dependence of the conductivity behaviour. The first one corresponds to the high temperature range (330 K–550 K) for which an Arrhenius plot type was obtained. The activation energy value was estimated at about 61.47 meV. The second domain corresponding to the intermediate temperature range (80 K–330 K) showed a variable activation energy between the grain boundaries. The barrier height, , was estimated to 27±0.5 meV, and the standard deviation, , was evaluated at about 14±0.5 meV. We found that at lower temperatures (20 K–80 K), the conductivity is governed by two conduction types. The density of localised states, was about 2.45×1020 eV−1 cm−3.  相似文献   

6.
Lead barium niobate is a new photorefractive material of high interest for a variety of applications including holographic storage. Pb0.5Ba0.5Nb2O6 crystals have been grown by the Bridgman method, and the effects of heat treatments on their photorefractive properties were investigated using Ar ion laser at λ=514.5 nm. The color and absorption spectrum of the crystals varied depending on the oxygen partial pressure during heat treatment. The oxygen diffusivity was estimated to be in the order of 10−6 and 10−5 cm2/h at 425 and 550 °C, respectively. Reduction treatment at an oxygen pressure of 215 mTorr increased the effective density of photorefractive charges about three times from 8.0×1015 to 2.2×1016 cm−3 and made the charge transport more electron-dominant. As a result, the maximum gain coefficient improved from 5.5 to 13.8 cm−1. A diffraction efficiency as high as 70% was achieved in a reduced crystal.  相似文献   

7.
Chemical preparation, crystal structure, IR absorption and thermal analysis of a new cyclotetraphosphate [2-NH2-5-CH3C5H4N]4P4O12·6H2O are reported. This compound is triclinic P-1 with unit-cell parameters: a = 10.206(5), b = 11.778(1), c = 9.991(4) Å,  = 110.40(6), β = 117.74(6), γ = 86.41(3)°, V = 989.1(8) Å3, Z = 1, Dx = 1.445 g cm−3. The structure has been determined and refined to R = 0.034 and Rw = 0.044, using 3663 independent reflections. The ring anions and water molecules form layers spreading around (a, b + c) planes via OHO hydrogen bonds. Between them are anchored 2-amino-5-methylpyridium cations, which establish H-bonds to interconnect the different adjacent layers and so contribute to the cohesion of the three-dimensional network. Tautomerization of (C6H9N2)+ groups was evidenced in the present structure.  相似文献   

8.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

9.
Ohmic contacts to the top p-type layers of 4H-SiC p+–n–n+ epitaxial structures having an acceptor concentration lower than 1×1019 cm−3 were fabricated by the rapid thermal anneal of multilayer Al/Ti/Pt/Ni metal composition. The rapid thermal anneal of multilayer A1/Ti/Pt/Ni metal composition led to the formation of duplex cermet composition containing Ni2Si and TiC phases. The decomposition of the SiC under the contact was found to be down to a depth of about 100 nm. The contacts exhibited a contact resistivity Rc of 9×10−5 Ω cm−2 at 21°C, decreasing to 3.1×10−5 Ω cm−2 at 186°C. It was found that thermionic emission through the barrier having a height of 0.097 eV is the predominant current transport mechanism in the fabricated contacts.  相似文献   

10.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

11.
High quality GaN epitaxial layers were obtained with AlxGa1−xN buffer layers on 6H–SiC substrates. The low-pressure metalorganic chemical vapor deposition (LP-MOCVD) method was used. The 500 Å thick buffer layers of AlxGa1−xN (0≤x≤1) were deposited on SiC substrates at 1025°C. The FWHM of GaN (0004) X-ray curves are 2–3 arcmin, which vary with the Al content in AlxGa1−xN buffer layers. An optimum Al content is found to be 0.18. The best GaN epitaxial film has the mobility and carrier concentration about 564 cm2 V−1 s−1 and 1.6×1017 cm−3 at 300 K. The splitting diffraction angle between GaN and AlxGa1−xN were also analyzed from X-ray diffraction curves.  相似文献   

12.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


13.
The optical absorption (hν) and Raman and Infra Red (IR) spectra of Si doped GaN layers deposited on sapphire through buffer layers have been recorded for electron concentrations from 5×1017 to 5×1019 cm−3. The (hν) values deduced from photothermal deflection spectroscopy (0.5–3.5 eV) and IR absorption (0.15–0.5 eV) vary between 50 and 104 cm−1 showing doping dependant free electron absorption at low energy, doping independant band gap at high energy, and slowly doping dependant defect absorption in the medium energy range. In our micro Raman geometry, maxima appear or can be deduced near the frequency expected for either the A1(LO) or the A1(LO+) modes split from the A1(LO) mode by plasmon phonon interaction. There is a large systematic evolution in the expected way for the IR reflectivity.  相似文献   

14.
Low temperature infrared transmission studies of Nd3+ doped YVO4 were performed, under a magnetic field B c, in the 1800–8000 cm−1 range of the 4I9/24I11/2, 4I13/2, and 4I15/2 Nd3+ crystal-field transitions. Good agreement is obtained between the experimental and calculated g-factors. Frequencies of the satellites in the 4I9/24F3/2 transitions of the Nd3+ isolated ion confirm the presence of ferromagnetic interactions between pairs of coupled Nd3+ ions that lift the Kramers doublet degeneracies of their ground state and excited multiplets.  相似文献   

15.
Thin films of polycrystalline β-FeSi2 were grown on (100) Si substrates of high resistivity by electron beam evaporation of Si/Fe ultrathin multilayers and subsequent annealing by conventional vacuum furnace (CVF) and rapid thermal annealing (RTA) for 1 h and 30 s, respectively, in the temperature range from 600 to 900°C. X-ray diffraction, Raman spectroscopy, spectroscopic ellipsometry, resistivity and Hall measurements were employed for characterization of the silicide layers quality in terms of the annealing conditions. For the silicide layers prepared by CVF annealing, although the grain size increase with increasing the annealing temperature, the optimum temperature to obtain the higher material quality (carrier mobility of the order of 100 cm2 Vs−1 and carrier concentration of about 1 × 1017 cm−3) is about 700°C. At higher annealing temperatures, the quality of the material is degraded due to the presence of the oxide Fe2O3. In the case of the silicides prepared by RTA, the quality of the material is improved progressively with increasing the annealing temperature up to 900°C.  相似文献   

16.
We report results of high-dose Al-ion implantation in 4H–SiC. Using multiple energy implantation techniques, box profiles were realized with targeted concentrations: 3.33×1018 to 1021 cm−3. The depths were 190 and 420 nm. The implantation energies ranged from 30 to 200 keV. The implantation and annealing temperatures were 650 and 1670°C, respectively. First, infrared investigations were done to assess the surface quality of the samples before and after annealing. Next, the conduction mechanism was investigated. Performing Hall measurements, we found that the room temperature free hole concentration varies like pH=Ct/105 (cm−3), where Ct is the targeted Al-concentration, with a high level of electronic mobility. For the targeted concentration 1021 cm−3, this resulted in an active layer with 95 mΩ cm resistivity and, at room temperature, a free hole concentration of 1019 cm−3.  相似文献   

17.
This paper reports the effects of beryllium (Be) doping in In0.53Ga0.26Al0.2As layers grown lattice-matched to InP (100) substrates by molecular beam epitaxy (MBE). Hall effect measurements showed that hole concentrations as high as 2.94×1019 cm−3 was achieved, and the concentration decreased with further increase in the Be cell temperature. Depending on the hole concentration, good optical quality was achieved as verified by photoluminescence (PL) measurements. X-ray diffraction (XRD) measurements showed lattice mismatch values of lower than 8.6×10−4 in most samples. An intense PL peak (5 K) at 1.089 eV which is attributed to band-acceptor recombination was observed from the sample with the lowest hole concentration of 2.28×1016 cm−3. This sample exhibited the lowest PL full-width at half maximum (FWHM) of 8 meV (at 5 K) for the free exciton recombination. To the best of our knowledge, this is the lowest value reported to date. An increase in the hole concentration caused a merging of the band-acceptor and free excitor recombination lines to form a broad PL spectrum. A shift in the free exciton peak position in the PL spectrum was observed following an increase in the hole concentration, an effect which was probably due to degeneracy.  相似文献   

18.
Three concepts for sources of ultra-cold neutrons (UCN) for the reactor FRM-II at Garching near Munich are studied: one, Mini-D2, is a source with 170 cm3 of solid deuterium in the beam tube SR4 and the second one a large solid-deuterium source (volume about 30 dm3), mounted in the beam tube SR5 as an advanced cold source with a number of neutron guides. The third one, Mark 3000, uses superfluid 4He at a cold-neutron guide. A UCN density of up to 7×104 cm−3 may possibly be achieved in the storage volumes of Mini-D2 yielding more than 109 UCN for extraction to an attached experimental setup. The usable UCN flux at the periphery of the large deuterium source is predicted to be 2×107 cm−2 s−1. Mark 3000, finally, is expected to yield a UCN density of about 105 cm−3.  相似文献   

19.
We use the glancing angle deposition technique (GLAD) to grow CuInS2 thin films by a vacuum thermal method onto glass substrates. During deposition, the substrate temperature was maintained at 200 °C. Due to shadowing effect the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. The evaporated atoms arrive at the growing interface at a fixed angle θ measured from the substrate normal. The substrate is rotated with rotational speed ω fixed at 0.033 rev s− 1. We show that the use of this growth technique leads to an improvement in the optical properties of the films. Indeed high absorption coefficients (105–3.105 cm− 1) in the visible range and near-IR spectral range are reached. In the case of the absence of the substrate rotation, scanning electron microscopy pictures show that the structure of the resulting film consists of nanocolumns that are progressively inclined towards the evaporation source as the incident angle was increased. If a rapid azimuthal rotation accompanies the substrate tilt, the resulting nanostructure is composed of an array of pillars normal to the substrate. The surface morphology show an improvement without presence of secondary phases for higher incident angles (θ > 60°).  相似文献   

20.
The electrochemical properties of doped diamond electrodes (1017–1019 B cm− 3) grown on carbon fiber cloths in H2SO4 0.1 mol L− 1 electrolyte were investigated. Cyclic voltammograms of B-doped diamond/carbon fiber cloth and carbon fiber cloth electrodes showed that both kinds of electrodes possess similar working potential windows of about 2.0 V. The electrode capacitance was determined by impedance spectroscopy and chronopotentiometry measurements and very close values were obtained. The capacitance values of the diamond film on carbon fiber cloths were 180 times higher than the ones of diamond films on Si. In this paper we have also discussed the capacitance frequency dependence of diamond/carbon cloth electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号