首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
测试与测量领域对快前沿脉冲发生器的需求越来越高,特别是要求产生高重复频率和高电压的快脉冲。本文使用串行雪崩三极管开发了一种低成本的便携式高重复频率高压纳秒方波脉冲发生器。通过优化设计串行晶体管电路和PCB,有效降低杂散电感和电压反射,使输出方波脉冲获得2.5ns的上升时间,幅度输出脉冲2.5kV,脉冲宽度为12.5ns。高压脉冲发生器在10kHz的高重复频率工作模式下,脉冲时间抖动小于100ps。  相似文献   

2.
基于SPCE061A控制的高压脉冲发生器测控系统   总被引:1,自引:0,他引:1  
对高压脉冲发生器的运行状况进行实时监测和有效控制是保护其安全、稳定运行的重要措施.采用热敏电阻和霍尔电流传感器实现对所用高压脉冲发生器绕组内温度和电流值的双重监测,当温度或电流超过设定值时,控制系统可通过报警、启动风冷、切断电源、暂停输出脉冲等动作及时有效地保护高压脉冲发生器.利用16位单片机SPCE061A和无线通信芯片nRF905可将数据无线传输到上位机,实现数据保存和历史查询.实验证明,该系统经济实用,响应速度快,可广泛应用于类似的场所.  相似文献   

3.
用于人体结石破碎的高压脉冲发生器主要由脉冲变压器和一级Marx发生器组成,主要设计了一个用于一级Marx发生器充电的、输出峰值脉冲电压为10kV且输出脉冲电压上升时间为24.525us的小型脉冲变压器。在分析其频率特性基础上,求得其实际电磁参数,并做了方波测试实验;最后做了脉冲发生器的脉冲破碎实验,证明设计的脉冲变压器符合本案例实验要求。  相似文献   

4.
根据技术要求,电源变压器在装配之后,须利用脉冲电压发生器和其它试验设备进行几种高压试验。为了使变压器与脉冲电压发生器之间根据不同的试验要求保持必要的距离(脉冲电压发生器是固定不动的),而移动变压器须花费很多时间。尤其是移动330KV电压级的  相似文献   

5.
一种诱导肿瘤细胞凋亡的多参数可调高压纳秒脉冲发生器   总被引:1,自引:0,他引:1  
为了研究纳秒脉冲电场诱导肿瘤细胞的凋亡效应及其窗口参数选择规律,本文结合脉冲功率技术和Blumlein集中参数LC网络脉冲形成线原理,研制出了一台医用多参数可调、便携式、智能型高压纳秒方波脉冲发生器。该发生器主要由高压直流电源、纳秒脉冲形成系统和脉冲整形及计数系统三部分组成,输出脉冲幅值4~15kV连续可调,脉宽50~500ns可变,上升沿最小10ns,重复频率可调,治疗时间窗口可控,并具有液晶显示和保护功能。以人浆液囊腺性卵巢癌SKOV3为研究对象,正交设计出多种脉冲参数组合进行实验分析,探索出肿瘤细胞凋亡率较高的脉冲治疗窗口参数。医学实验表明:发生器紧凑、轻便、性能稳定,有效满足了纳秒脉冲电场诱导肿瘤细胞凋亡的机理及窗口参数选择的研究需要。  相似文献   

6.
本文介绍采用雪崩管开关的马克斯高压毫微秒脉冲发生器的基本原理和设计考虑。实验结果表明,用这种方法很容易获得上升时间小于3ns,输出幅度超过5000V 的高压毫微秒脉冲。最后,还讨论了这种脉冲源的可能应用。  相似文献   

7.
研制了适用于激光器的电感储能发生器(GIES),并研究了它在高压混合气体中的放电和激光参数.研究表明,电感储能发生器可产生高压预脉冲并引起放电电流的突然增大,可在不同的混合气体中形成长时间的稳定放电,从而方便地控制和优化每一种气体混合物的预脉冲参数.在未知IES击穿电压和首次放电幅度下的参数时,电流尖峰会按因子1.5-...  相似文献   

8.
研制了一种新型水净化处理装置,以取代氯气消毒工艺。装置利用高压脉冲在水雾中介质阻挡放电产生低温等离子体,综合了高能电子辐射、臭氧氧化、紫外光照射等多因素的协同降解作用,使出水达到国家饮用水标准。另外对装置的高压脉冲电源、等离子体发生器的研制提出了新的设计思路。  相似文献   

9.
导波检测用激励源的设计及应用   总被引:1,自引:0,他引:1  
研制出一种用AD9833和模拟乘法器MC1496合成产生信号,用单片机控制的导波检测用信号发生器。该信号发生器可根据实际检测条件进行频率、加窗形状、窗体宽度、猝发间隔程控修改等操作。运用该仪器研究分析了特定条件下不同频率,不同脉宽的激励信号的回波信号,确定了检测的最佳频率为100kHz以上,宽度为4个脉冲。运用该仪器的导波检测系统能检测出来5%缺损面积的缺陷,定位精度可达5%。  相似文献   

10.
脈冲回路     
第七章脉冲发生器前面几章,主要叙述了采用半导体元件组成的基本脉冲回路,从这一章起,叙述应用基本回路组成的脉冲回路和脉冲装置。但脉冲装置包括的范围非常广泛,以下主要论述测量及通信范围内使用的脉冲装置。脉冲回路的试验或者使脉冲装置工作时,脉冲发生器都是不可缺少的装置。脉冲发生器按照用途来分有很多种类,从基本功能方面讲,可归纳为以下几类。 7.1标准脉冲发生器要求脉冲发生器有最低限度的功能,就是要给与负载必需的频率、脉冲宽度、脉冲幅度及正负脉冲等。最基本的脉冲发生器的组成情况如图7.1所示。脉冲振荡回路采用了具有一  相似文献   

11.
针对声波测井压电陶瓷换能器容性大的负载特性,采用单片机和CPLD相结合的方式设计了一种输出幅度高、驱动电流大、脉冲宽度可调的双通道高压脉冲信号源。系统利用C8051F350单片机及PWM控制芯片MM33060A,并结合自耦变压器反激式升压电路将12 V直流供电电压抬升至300 V。采用CPLD产生精确的频率可控的300 V脉冲电压,利用脉冲变压器进一步提升电压,得到了上千伏的高压激励脉冲。实验结果标明,设计的信号源在激励压电陶瓷换能器时,负载上得到了比较理想的波形,波形上升沿陡峭,无拖尾及振荡现象,满足实际应用需求。  相似文献   

12.
In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.  相似文献   

13.
A solid-state nanosecond SOS-generator for electrophysical technology applications is described. In the input part of the generator, the energy arrives at the high-voltage magnetic compressor through IGBT modules and a step-up pulse transformer. The input part of the generator is equipped with an unused energy recuperation circuit, and, when the output pulse is formed, the microsecond pumping mode of the semiconductor opening switch (SOS) is realized. As a result, the complete efficiency of the generator operating into a matched load is increased from ∼40 to 60–62%. The other characteristics of the generator are as follows: the peak voltage is up to 60 kV, the current is up to 6 kA, the pulse duration is about 40 ns, the pulse repetition rate in the continuous mode is 1 kHz, and the average output power is up to 9 kW.  相似文献   

14.
A small-size high-voltage (~20 kV) microsecond pulse generator, which is based on a pulse transformer and loaded into a reactor with a pulse corona discharge, is described. Insulated-gate bipolar transistors (IGBTs) that form the switch are used in the low-voltage circuit of the generator. When the switch is open, voltage pulses with an amplitude of up to 1000 V are created across it and, hence, across the primary winding of the transformer. The pulse repetition rate of the generator is ~20000 pulses/s.  相似文献   

15.
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.  相似文献   

16.
The possibility of adjusting the output voltage of a high-voltage nanosecond pulse generator with inductive energy storage and a solid-state switching system was investigated. All components of the adjustment system are installed in the low-voltage input circuit of the generator, whose voltage was less than 1000 V. The smooth adjustment of the output voltage in the range of 70–115 kV was achieved. The experimental setup and the obtained results are described.  相似文献   

17.
Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.  相似文献   

18.
Results of the development and study of a 14-stage air high-voltage pulse generator with an output voltage of up to 250 kV, a current rise time of 10 ns, and blow capacitance of 400 pF are presented. The design and the schematic circuit diagram of the generator are described.  相似文献   

19.
The electric circuit and design of a high-volta ge pulse generator with an output voltage of ≥3 50 kV is described. The generator operates in the nanosecond range of pulse durations (~300 ns) at a repetition rate of up to 10 pulses/s in a continuous mode and is intended for electric-discharge technologies. The energy stored in the generator is ~600 J, and the energy released in a pulse is ≥300 J. A discharge of a capacitive storage through a toroidal pulsed transformer and a discharge gap is used in the generator.  相似文献   

20.
The GIT-32 current generator was developed for experiments with current carrying pulsed plasma. The main parts of the generator are capacitor bank, multichannel multigap spark switches, low inductive current driving lines, and central load part. The generator consists of four identical sections, connected in parallel to one load. The capacitor bank is assembled from 32 IEK-100-0.17 (0.17 microF, 40 nH, 100 kV) capacitors, connected in parallel. It stores approximately 18 kJ at 80 kV charging voltage. Each two capacitors are commuted to a load by a multigap spark switch with eight parallel channels. Switches operate in ambient air at atmospheric pressure. The GIT-32 generator was tested with 10, 15, and 20 nH inductive loads. At 10 nH load and 80 kV of charging voltage it provides 1 MA of current amplitude and 490 ns rise time with 0.8 Omega damping resistors in discharge circuit of each capacitor and 1.34 MA530 ns without resistors. The net generator inductance without a load was optimized to be as low as 12 nH, which results in extremely low self-impedance of the generator ( approximately 0.05 Omega). It ensures effective energy coupling with low impedance loads like Z pinch. The generator operates reliably without any adjustments in 40-80 kV range of charging voltage. Maximum jitter (relative to a triggering pulse) at 40 kV charging voltage is about 7 ns and lower at higher charging voltages. Operation and handling are very simple, because no oil and no purified gases are required for the generator. The GIT-32 generator has dimensions of 3200 x 3200 x 400 mm(3) and total weight of about 2500 kg, thus manifesting itself as a simple, robust, and cost effective apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号