共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 相似文献
3.
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 相似文献
4.
传统的心电信号(ECG)去噪算法在去除线性的、平稳的ECG信号噪声时效果显著,但是在面对非线性、非平稳的ECG信号噪声时去噪效果不理想.为了提高心电信号算法的去噪能力运用了一种基于降噪自动编码器的ECG去噪算法.降噪自动编码器(DAE)具有噪声鲁棒性的特点,可以在信号受到污染的情况下尽可能地恢复数据的原始状态.为了进一步提升降噪自动编码器算法的去噪效果用多个降噪自动编码器堆叠形成深度神经网络对心电信号进行降噪处理.通过实验结果表明:多层降噪自动编码器(SDAE)算法相较于DAE算法和传统的心电信号去噪算法,SDAE算法对非线性、非平稳的信号噪声具有更好的降噪效果,而且保留了原始心电信号绝大部分的细节信息,对噪声具有较强的抗干扰能力,满足了心电信号的去噪要求. 相似文献
5.
特征提取是软件缺陷预测中的关键步骤,特征提取的质量决定了缺陷预测模型的性能,但传统的特征提取方法难以提取出软件缺陷数据的深层本质特征。深度学习理论中的自动编码器能够从原始数据中自动学习特征,并获得其特征表示,同时为了增强自动编码器的鲁棒性,本文提出一种基于堆叠降噪稀疏自动编码器的特征提取方法,通过设置不同的隐藏层数、稀疏性约束和加噪方式,可以直接高效地从软件缺陷数据中提取出分类预测所需的各层次特征表示。利用Eclipse缺陷数据集的实验结果表明,该方法较传统特征提取方法具有更好的性能。 相似文献
6.
7.
为了提高自动编码器算法的学习精度,更进一步降低分类任务的分类错误率,提出一种组合稀疏自动编码器(SAE)和边缘降噪自动编码器(mDAE)从而形成稀疏边缘降噪自动编码器(SmDAE)的方法,将稀疏自动编码器和边缘降噪自动编码器的限制条件加载到一个自动编码器(AE)之上,使得这个自动编码器同时具有稀疏自动编码器的稀疏性约束条件和边缘降噪自动编码器的边缘降噪约束条件,提高自动编码器算法的学习能力。实验表明,稀疏边缘降噪自动编码器在多个分类任务上的学习精度都高于稀疏自动编码器和边缘降噪自动编码器的分类效果;与卷积神经网络(CNN)的对比实验也表明融入了边缘降噪限制条件,而且更加鲁棒的SmDAE模型的分类精度比CNN还要好。 相似文献
8.
文本语言的情感分析历来是自然语言处理领域的热点研究课题,尤其是在当下互联网迈入web2.0时代,多样的社交网络平台呈现出巨量而丰富的文本情感信息,因此挖掘网络数据文本信息并作情感倾向判断对人机交互与人工智能具有重大的现实意义。传统的解决文本情感分析问题的方法主要是浅层学习算法,利用回归、分类等方案实现特征的提取及分类。以这类方法为起点,本文探索采用深度学习的方法对网络文本进行细粒度的情感分析,以期达到即时获取依附于网络世界的社会人的情感,甚至是让机器达到对人类情感表达的深度理解。对于深度学习的具体实现,本文采用的是降噪自编码器来对文本进行无标记特征学习并进行情感分类,后文中利用实验训练获得最佳的参数设置,并通过对实验结果的分析和评估论证深度学习对于情感信息的强大解析能力。 相似文献
9.
针对心电信号在采集和传输过程中受到各种噪声的干扰影响心电疾病诊断的问题,提出一种基于无损约束降噪自动编码器的心电信号降噪算法.通过构建深层神经网络来学习心电信号的深层特征,利用特征分离心电信号和噪声,实现对心电信号中常见的肌电干扰、基线漂移和电极干扰3种噪声的滤除.实验结果表明,该方法平均输出信噪比高于23.82 dB... 相似文献
10.
11.
为了提高栈式稀疏去噪自编码器(SSDA)的图像去噪性能,解决计算复杂度高,参数不易调节,训练收敛速度慢等问题,提出了一种栈式边缘化稀疏去噪自编码器(SMSDA)的图像去噪方法。首先,由于边缘化去噪自编码器(MDA)具有收敛速度快这一特性,对SDA网络损失函数作边缘化处理,形成边缘化稀疏去噪自编码器(MSDA),使其同时满足边缘性和稀疏性。其次,将多个MSDA堆叠构成深度神经网SMSDA,为避免模型参数局部最优,采用非监督逐层训练法分别训练每一层网络,再用BP算法对整个网络微调,从而获得最优权重。最后,用SMSDA对给定图像去噪。仿真结果表明,较SSDA而言,所提算法在降低计算复杂度、提高收敛速度的同时,拥有较高峰值信噪比(PSNR),且保留了更多原始图像的细节信息,具有更好的降噪性能。 相似文献
12.
文本情感分析是多媒体智能理解的重要问题之一.情感分类是情感分析领域的核心问题,旨在解决评论情感极性的自动判断问题.由于互联网评论数据规模与日俱增,传统基于词典的方法和基于机器学习的方法已经不能很好地处理海量评论的情感分类问题.随着近年来深度学习技术的快速发展,其在大规模文本数据的智能理解上表现出了独特的优势,越来越多的研究人员青睐于使用深度学习技术来解决文本分类问题.主要分为2个部分:1)归纳总结传统情感分类技术,包括基于字典的方法、基于机器学习的方法、两者混合方法、基于弱标注信息的方法以及基于深度学习的方法;2)针对前人情感分类方法的不足,详细介绍所提出的面向情感分类问题的弱监督深度学习框架.此外,还介绍了评论主题提取相关的经典工作.最后,总结了情感分类问题的难点和挑战,并对未来的研究工作进行了展望. 相似文献
13.
短文本情感倾向分析是自然语言处理领域的关键研究问题之一.情感倾向分析是用于检测语言所蕴含主观倾向语义的一系列方法、技术和工具,是对文本深层语义理解的关键.短文本数据的随意性、高歧义性以及简短性使得传统基于特征工程和机器学习分类技术的情感倾向分析任务性能有限.随着深度学习技术在自然语言处理中的广泛应用,基于深度学习的短文... 相似文献
14.
情感分析是近些年自然语言处理的一个研究热点,一方面以word2vec为代表的预处理词向量技术得到了广泛应用,本文通过融合情感标签获得word2vec-ST词向量来提取句子的语义和情感信息并达到了较好的效果,另一方面,LSTM作为RNN的衍生模型已经成熟的应用到自然语言处理的模型构建当中,但LSTM在短文本和训练语料相对有限的情况下并没有展现出应有的优势,因此,借助于CNN在捕捉局部信息上的优势,本文提出了一种融合LSTM和CNN的注意力模型网络来提取文本的上下文信息,并通过实现attention机制的BILSTM来替代LSTM得到AT-BL C模型进而达到了更好的效果。本文对比分析了LSTM和CNN的两种融合方式并在标准数据集上进行了比较。实验结果表明,以融合情感信息的word2vec-ST为词向量层基础,AT-BL C确实获得了更好的准确率和F值。 相似文献
15.
This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network (CMA-MemNet). This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network’s inability to capture context-related information on a word-level, we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network (RNN) long short term memory (LSTM), gated recurrent unit (GRU) models, we retain the parallelism of the network. We experiment on the open datasets SemEval-2014 Task 4 and SemEval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently. 相似文献
16.
Wenge RONG Baolin PENG Yuanxin OUYANG Chao LI Zhang XIONG 《Frontiers of Computer Science》2015,9(2):171
With the development of Internet, people are more likely to post and propagate opinions online. Sentiment analysis is then becoming an important challenge to understand the polarity beneath these comments. Currently a lot of approaches from natural language processing’s perspective have been employed to conduct this task. The widely used ones include bag-of-words and semantic oriented analysis methods. In this research, we further investigate the structural information among words, phrases and sentences within the comments to conduct the sentiment analysis. The idea is inspired by the fact that the structural information is playing important role in identifying the overall statement’s polarity. As a result a novel sentiment analysis model is proposed based on recurrent neural network, which takes the partial document as input and then the next parts to predict the sentiment label distribution rather than the next word. The proposed method learns words representation simultaneously the sentiment distribution. Experimental studies have been conducted on commonly used datasets and the results have shown its promising potential. 相似文献
17.
情感分析是自然语言处理领域的重要研究问题。现有方法往往难以克服样本偏置与领域依赖问题,严重制约了情感分析的发展和应用。为此,该文提出了一种基于深度表示学习和高斯过程知识迁移学习的情感分析方法。该方法首先利用深度神经网络获得文本样本的分布式表示,而后基于深度高斯过程,从辅助数据中迁移与测试集数据分布相符的高质量样例扩充训练数据集用于分类器训练,以此提高文本情感分类系统性能。在COAE2014文本情感分类数据集上进行的实验结果显示,该文提出的方法可以有效提高文本情感分类性能,同时可以有效缓解训练数据的样本偏置以及领域依赖问题的影响。 相似文献
18.
微博情感分析对于商业事务和政治选举等应用非常重要。传统的做法主要基于浅层机器学习模型,对人工提取的特征有较大的依赖,而微博情感特征往往难以提取。深度学习可以自动学习层次化的特征,并被用于解决情感分析问题。随着新的深度学习技术的提出,人们发现只要提供足够多的监督数据,就能训练出好的深度模型。然而,在微博情感分析中,通常监督数据都非常少。微博中广泛存在着弱监督数据。该文提出基于弱监督数据的“预训练—微调整”训练框架(distant pretrain-finetune),使用弱监督数据对深度模型进行预训练,然后使用监督数据进行微调整。这种做法的好处是可以利用弱监督数据学习到一个初始的模型,然后利用监督数据来进一步改善模型并克服弱监督数据存在的一些问题。我们在新浪微博数据上进行的实验表明,这种做法可以在监督数据较少的情况下使用深度学习,并取得比浅层模型更好的效果。 相似文献
19.
方面级别的文本情感分析旨在针对一个句子中具体的方面单词来判断其情感极性.针对方面单词可能由多个单词组成、平均化所有单词的词向量容易导致语义错误或混乱,不同的文本单词对于方面单词的情感极性判断具有不同的影响力的问题,提出一种融合左右的双边注意力机制的方面级别的文本情感分析模型.首先,设计内部注意力机制来处理方面单词,并根据方面单词和上下文单词设计了双边交互注意力机制,最后将双边交互注意力的处理结果与方面单词处理值三个部分级联起来进行分类.模型在SemEval 2014中两个数据集上进行了实验,分别实现了81.33%和74.22%的准确率,相比较于机器学习和结合注意力机制的各种模型取得了更好的效果. 相似文献
20.
Aspect-based sentiment analysis systems are a kind of text-mining systems that specialize in summarizing the sentiment that a collection of reviews convey regarding some aspects of an item. There are many cases in which users write their reviews using conditional sentences; in such cases, mining the conditions so that they can be analyzed is very important not to misinterpret the corresponding sentiment summaries. Unfortunately, current commercial systems or research systems neglect conditions; current frameworks and toolkits do not provide any components to mine them; furthermore, the proposals in the literature are insufficient because they are based on handcrafted patterns that fall short regarding recall or machine learning procedures that are tightly bound with a specific language and require too much configuration. In this article, we present Torii, which is a system that loads a collection of reviews, discovers the aspects on which they report, and summarizes the sentiment that is conveyed on them taking into account the existing conditions, if any. We also describe its architecture, our approach to mine conditions, and our experimental analysis on a large multilingual data set with reviews from multiple categories. To the best of our knowledge, Torii is the first proposal that addresses aspect-based sentiment analysis taking conditions into account. 相似文献