首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C形环在密封过程中存在低应力区,这些区域难以保证密封可靠性,因此研究C形环密封特性时,需要分析有效接触应力和区域。选取外径为318 mm的C形环为研究对象,利用等效壁厚代替螺旋弹簧丝径,建立C形环等效模型,通过压缩回弹试验验证了模型的合理性。利用有限元方法研究银层厚度、包覆层厚度以及等效壁厚(弹簧丝径)对C形环密封性能的影响。结果表明:银层表面有效接触宽度随着银层厚度、包覆层厚度的增加而增大,有效接触应力随银层厚度、包覆层厚度的增加而减小,等效壁厚的增加可同时增加有效接触宽度和有效接触应力。采用正交试验对C形环的结构参数进行优化设计。结果表明:银层厚度和等效壁厚对有效接触应力和有效接触宽度影响显著。C形环最优设计方案为银层厚度0.2 mm,包覆层厚度0.5 mm,弹簧丝径3.1 mm,泄漏率试验结果表明,优化后C形环具有更好的密封性能。  相似文献   

2.
利用有限元软件ANSYS模拟分析了往复运动Y形密封圈的静态和动态密封性能。研究了短唇倾角、唇谷高2个结构参数对Y形密封圈静态密封性能的影响;分析了工作油压、往复运动速度和摩擦系数3个工况参数对Y形圈动态密封性能的影响。结果表明:当短唇倾角在6°~10°,唇谷高在5~6 mm时,Y形圈的静态密封性能较好,且随着短唇倾角和唇谷高的增加,其静态性能增强;当工作油压小于10 MPa、往复运动速度在0.2~0.5 m/s时,Y形圈的动态密封性能较好,而密封圈与活塞杆间的动态摩擦系数对其密封性能影响不明显。  相似文献   

3.
为了研究不同结构参数对U形金属密封环密封性能的影响规律,利用ABAQUS软件建立某U形金属密封环的二维轴对称模型,在常温预紧工况和低温工作工况下计算分析U形密封环厚度、截面宽度、腿部厚度以及圆弧半径等结构参数对密封环最大Von Mises应力、接触压力大小及其分布以及接触宽度的影响。结果表明,将U形环厚度增大为3.8 mm、腿部厚度减小为0.1 mm时,U形环密封性能提高;取截面宽度在6.4~6.8 mm之间、圆弧半径在0.7~0.9 mm之间,均能获得较好的密封性。根据计算结果,针对加载后U形密封环腿部出现翘曲的现象,提出了减小U形环腿部右端高度的改进方法。  相似文献   

4.
金属C形环力学性能及密封特性分析   总被引:2,自引:0,他引:2  
弹簧加强金属C形环是一种性能优良的静密封元件,为研究结构对C形环力学性能以及密封面接触特性的影响,建立弹簧加强金属C形环三维仿真模型,采用有限元方法分析C形环的压缩回弹特性。仿真结果与压缩回弹实验结果一致,验证了理论模型的正确性。分析C形环密封面上接触区域和接触压力的变化规律,讨论C形环结构对密封特性的影响。结果表明:在相同的载荷下,C形环卸载时的接触区域比加载时的大,表明在卸载阶段C形环在更低载荷下即可维持同等密封效果;螺旋弹簧使C形环具备良好的回弹性能,能更好地应对使用工况的波动;银层使法兰与密封环的接触界面实现良好密封,合金层起保护银层和平稳传递接触力的作用。  相似文献   

5.
针对双浮动端面密封的结构,建立密封二维轴对称非线性接触模型,提取浮动密封环谷半径和锥面角两个关键参数,利用有限元方法计算并分析这两个参数和橡胶O形圈压缩率对密封性能的影响。结果表明:随着浮动环谷半径和锥面角的增大,O形圈von Mises应力、接触压力、密封端面相对变形及轴向力相应增大;锥面角对以上性能参数的影响随着谷半径的增大而显著增加;轴向力同O形圈压缩率成正比,且增幅随着压缩率的增大而增大;浮动环端面产生由内径向外径处呈发散型的变形。通过设计浮动密封轴向力测量装置,实验验证有限元计算模型具有较好的可靠性。  相似文献   

6.
以某潜水器大型舱段连接处使用的三角密封结构为研究对象,建立O形圈与三角形沟槽接触的非线性有限元分析模型,仿真分析三角密封结构的橡胶材料硬度、O形圈内径、沟槽倒角尺寸、沟槽圆角尺寸对密封性能的影响规律。结果表明:橡胶材料硬度、沟槽倒角尺寸对密封性能影响较大,O形圈内径与沟槽圆角尺寸对密封性能影响较小;随着橡胶材料硬度的增加,O形圈密封能力增强,但在相同液体压力条件下,橡胶材料硬度越大O形圈应力越高,增大了O形圈被破坏的可能性,因此,在保证密封性能的前提下,要尽可能选取硬度小的O形圈;随着沟槽倒角尺寸的增加,O形圈的密封性能不断下降,同时应力水平也逐渐降低,因此,设计沟槽倒角尺寸时,在保证密封性能的前提下,要尽可能选取大的倒角尺寸。  相似文献   

7.
水下柔性连接器可解决水下油气管道在连接时因管道角度偏离而无法成功对接的问题。水下连接器的密封结构以球面上的O形圈为主,为了验证连接器密封结构在水下的密封性能,通过对O形圈材料本构方程的计算分析,得到O形圈橡胶材料的重要材料参数;从von Mises应力、接触压力、不同接触面的接触宽度等方面,分析不同介质压力对O形圈密封性能的影响。结果表明:水下柔性连接器密封结构在不同工作状态下均能够保持良好的密封性能,且介质压力越大,O形圈与球形结构上的密封槽之间的接触应力就越大,连接器密封性能有所提升。通过压力试验验证了O形圈球形结构应用在水下是可靠的。  相似文献   

8.
井下V形金属密封环密封性能研究   总被引:1,自引:0,他引:1  
提出一种适用于井下复杂环境的V形金属密封环,利用压力密封装置模拟40 MPa压差工作环境,研究V形金属密封环在井下流量控制阀中的密封性能。将V形环的力学模型分解为圆筒过盈配合与悬臂梁力学模型进行理论分析,得出密封接触面的应力计算公式,并利用ABAQUS进行仿真验证。建立V形环两种密封面(曲面与平面)的轴对称模型,分析密封环在40 MPa压差下,不同过盈量与倾角对密封性能的影响,并对比2种结构的性能。结果表明,在满足密封性能的前提下,平面密封结构的过盈量取值范围更广,并且在相同结构参数时的接触应力大于曲面密封。确定平面密封结构过盈量与倾角的取值范围,为井下流量控制阀中V形金属密封环的设计提供了参考,应力计算公式也为密封环的设计提供了一个初步的接触面应力。  相似文献   

9.
W形金属密封环回弹与密封性能研究   总被引:1,自引:0,他引:1  
利用ANSYS分析W形金属密封环的压缩回弹性能和密封性能,得出W形金属密封环的压缩量与压紧力的关系;讨论加卸载过程中合金基体与银层的等效塑性应变分布情况并分析密封机制。通过正交试验,分析壁厚、波高、波峰半径、波谷半径等结构参数对密封环回弹性能和密封性能的影响规律。结果表明:W形环具有高回弹量和良好的自紧密封功能;加载压缩量达到10%时,合金基体的波谷区域开始出现塑性应变;镀银层在加载时的塑性流动,是能够实现密封的必要条件;壁厚和波高是对W形环综合性能影响最主要的参数;波谷半径过大将导致W形环密封性能难以保证,在改进设计中应避免。  相似文献   

10.
建立单点系泊系统液滑环蓄能弹簧密封圈的二维轴对称模型,分析U形弹簧对系统密封性能的补偿能力;基于正交试验法对不同尺寸弹簧蓄能密封圈进行仿真模拟,分析各参数对密封区域接触压力的影响;以峰值接触应力和线接触压力为密封性能的评价指标,唇口直径、唇长、唇厚以及被压环厚度为主要参数,分析各结构参数对密封性能的影响程度,并得到最优的模型尺寸参数。结果表明:内嵌蓄能弹簧可显著提升密封接触压力,使密封圈密封性能更优;随着唇口直径、唇厚增大,峰值接触压力和线接触压力均是先增大后减小,随着唇长增大,峰值接触压力和线接触压力先缓慢增大后快速增大,而随着被压环厚增大,峰值接触压力和线接触压力先快速减小后缓慢减小;唇厚对峰值接触的影响最大,然后依次为唇口直径、唇长、被压环厚,而唇长对线接触压力的影响最大,然后依次为唇口直径、唇厚、被压环厚。  相似文献   

11.
该文首先简要介绍了密封圈工作过程对密封性能的几个影响因素。随后以水下用高压舱的O形橡胶圈密封(以下简称O形圈)过程为分析实例,采用ansys建立密封截面的工作模形,其中O形圈采用超弹性体单元hyper56模拟,密封舱体端面采用刚性单元模拟。通过改变密封截面的参数和介质压力,计算出了不同参数下的仿真结果。最后分析仿真结果总结了几个密封影响因素对密封性能的影响机理,提出如何提高O形圈密封性能的改进方向。  相似文献   

12.
辅助密封是静压型机械密封重要的组成部分,其位置变化会对高压条件机械密封的性能产生重要影响,针对该问题,本文考虑密封组件之间的多体接触关系与O形圈辅助密封的影响,建立了静压型机械密封的热流固耦合计算模型。基于此模型,分析了机械密封性能随辅助密封位置参数变化的规律和机理,对比了不同安装部位O形圈位置参数的敏感性程度。结果表明,不同安装部位O形圈的位置参数对机械密封性能影响程度显著不同,其中密封环背部O形圈对密封性能影响极大,其泄漏率的平均变化率为2.06,因此在设计和制造过程中需特别注意。  相似文献   

13.
采用有限元分析对耐压门C形密封圈密封结构进行计算分析和截面尺寸优化,计算校核典型算例下的密封性能,分析C形密封圈截面尺寸参数对其大间隙工况下密封性能的影响。结果表明:典型算例中C形密封圈结构在流体载荷增加的情况下,接触应力峰值也随之增加,并始终大于流体载荷,能够保证密封性能;大间隙密封工况下,C形密封圈截面开口半径、开口间隙和削斜高度对其密封能力影响显著。根据分析结果,优化了密封圈截面尺寸参数,优化后的密封结构在预紧压缩和大间隙工况下的密封性能均优于原始密封结构。  相似文献   

14.
针对汽车排气管密封问题,设计一种适合汽车排气系统密封的V形金属密封环。该密封环采用平面接触、小接触压力方式,在满足密封要求的同时避免了较大的预紧力;在波谷处采用圆弧过渡,降低了密封环的整体刚度,侧边倾斜一定角度以增大密封环的回弹性能。利用ANSYS Workbench软件对V形金属密封环常温预紧和高温工况下的密封性能进行分析,在保证密封强度要求下确定安装时合适的轴向压缩量;分析密封环结构参数对密封性能的影响,发现壁厚、环宽、波谷半径、接触圆半径、开口角度对密封性能影响较大。基于Design-Expert软件对密封环结构参数进行多目标优化,从而降低了密封环最大等效应力,提高了最大接触压力,减小了密封环质量,并通过相关实验验证有限元模型的可靠性。  相似文献   

15.
陈波  杨晓  涂庆 《润滑与密封》2019,44(3):92-98
采用ABAQUS软件建立帽形滑环式组合密封有限元模型,研究不同工作压力、密封间隙、运动速度和摩擦因数对其密封性能的影响规律。研究结果表明:静密封工况下,活塞杆与O形圈间的最大接触应力是影响密封性能的关键因素,随着工作压力的增大或密封间隙的减小,O形圈与帽形滑环的最大Von Mises应力均逐渐增大,各表面间的接触应力也逐渐上升;动密封工况下,工作压力越大、密封间隙越小,接触应力越大,密封间隙为0.3 mm其动密封性能最优,而随摩擦因数的增大,接触应力总体呈上升趋势,运动速度则对于接触应力基本无影响。  相似文献   

16.
某型号弹载电液舵机采用O形圈密封,其工作可靠性和使用寿命与O形圈密封性能密切相关。为了探究压缩率、槽口圆角和密封间隙在耦合条件下对其密封性能的影响,建立了二维有限元模型,施加了流体压力载荷,研究了压缩量、槽口圆角和密封间隙等参数对O形圈在承载时的等效应力和接触应力的影响,为密封结构的优化提供了理论依据。  相似文献   

17.
赋能型金属C型密封环是保障核电站安全运营至关重要的基础部件,其组成部件之一的合金覆层的厚度将会影响C型环的密封性能。在建立C型环三维弹塑性有限元分析模型的基础上,通过实验验证了理论模型的可靠性,详细分析了合金覆层厚度对C型环力学性能和密封性能的影响。结果表明:在同一压缩量下,合金覆层越厚C型环刚度略大但它对回弹特性无明显影响;而合金覆层厚度过小时,塑性应变值较大,不利于C型环的密封;相反,合金覆层厚度越大,接触应力分布也越均匀,但过厚的合金覆层会导致密封面起皱;对于百万千瓦级核反应堆压力容器(RPV)用金属C型密封环,为保证良好的密封效果,工程上宜推荐合金层厚度在0.5 mm~0.7 mm范围内才能确保C型环具备较好的密封性能。  相似文献   

18.
密封沟槽口处倒角可避免O形圈安装和使用过程中被锐边划伤,但沟槽口倒角半径的选择多半依据经验,实际使用中发现密该倒角半径对密封性能有重要影响。该文选取GB/T3452.1-2005下18×1.8的O形密封圈,在其他参数不变的情况下,利用ABAQUS有限元软件分析了介质压力从2.5~16MPa变化时密封沟槽口倒角半径对O形密封圈内部Von Mises应力和接触压力的影响。分析表明,倒角半径r从0.1mm变化到0.5mm,在介质压力较小时,该倒角对密封性能影响不明显;而在高介质压力下,最大Von Mises应力增加43%左右,挤入密封间隙的量明显增加,且最大接触压力点向沟槽槽口移动,对密封性能有影响明显。  相似文献   

19.
童华  陈明旸 《润滑与密封》2018,43(10):104-110
针对新型井下排水泵驱动气缸活塞中使用的双三角滑环式密封圈,建立其二维轴对称与三维实体有限元模型。采用二维轴对称模型分析滑环的最小厚度、圆弧半径、宽度与O形圈预压缩量等几何参数和介质压力、往复运动速度、环境温度等工作参数对其静密封和往复动密封性能的影响。采用三维实体模型分析环向接触应力分布和活塞径向偏心对密封性能的影响。结果表明:在静密封中,除滑环宽度外的几何参数会对主密封面的接触应力大小和分布产生较大影响;介质压力增加时,密封圈具有较好的自封性;环境温度的增加会降低最大接触应力与O形圈的最大Mises应力;在动密封中,最大接触应力随时间呈波动变化,介质压力、运动速度与环境温度在一定范围内会影响其密封性能;当活塞处于径向偏心运动状态时,密封性能会随着偏心量的增大而明显降低,故应采取措施尽量提高活塞在气缸中的同轴度。  相似文献   

20.
高压容器的密封结构形式,是决定其密封性能的关键。高压密封大体可分以下几种: (1)自紧密封自紧密封分为;○形环密封、C形环密封、B形环密封、三角垫密封、楔形垫密封、平垫自紧密封、组合式自紧密封。它依靠各自密封结构的特点,在压力升高后密封元件与顶盖、筒体端部之间的接触力加大,而使其在高压下有良好的密封性能,如橡胶○形圈在压力下静密封而产生的自密封性。高压密封的预紧螺栓仅保持初始密封所需的力就可以了。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号