首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于类别信息的特征权重计算方法对特征与类别的关系表达不够准确,即对于类别频率相同的特征无法比较其对类别的区分能力,因此要考虑特征在类内的分布情况。将特征的反类别频率(inverse category frequency,ICF)和类内熵(entropy)相结合引入到特征权重计算方案中,构造了两种有监督特征权重计算方案。在维吾尔文文本分类语料上进行的实验结果表明,该方法能够明显改善样本的空间分布状态并提高维吾尔文文本分类的微平均◢F◣▼1▽值。  相似文献   

2.
特征权重计算是文本分类过程的基础,传统基于概率的特征权重算法,往往只对词频,逆文档频和逆类频等进行统计,忽略了类别之间的相互关系。而对于多分类问题,类别之间的关系对统计又有重要意义。因此,针对这一不足,本文提出了基于类别方差的特征权重算法,通过计算类别文档频率的方差来度量类别之间的联系,并在搜狗新闻数据集上对五种特征权重算法进行分类实验。结果表明,与其他四种特征权重算法相比,本文提出的算法在F1宏平均和F1微平均上都有较大的提高,提升了文本分类的效果。  相似文献   

3.
面对海量数据的管理和分析,文本自动分类技术必不可少。特征权重计算是文本分类过程的基础,一个好的特征权重算法能够明显提升文本分类的性能。本文对比了多种不同的特征权重算法,并针对前人算法的不足,提出了基于文档类密度的特征权重算法(tf-idcd)。该算法不仅包括传统的词频度量,还提出了一个新的概念,文档类密度,它通过计算类内包含特征的文档数和类内总文档数的比值来度量。最后,本文在两个中文常见数据集上对五种算法进行实验对比。实验结果显示,本文提出的算法相比较其他特征权重算法在F1宏平均和F1微平均上都有较大的提升。  相似文献   

4.
文本表示是使用分类算法处理文本时必不可少的环节,文本表示方法的选择对最终的分类精度起着至关重要的作用。针对经典的特征权重计算方法TFIDF(Term Frequency and Inverted Document Frequency)中存在的不足,提出了一种基于信息熵理论的特征权重算法ETFIDF(Entropy based TFIDF)。ETFIDF不仅考虑特征项在文档中出现的频率及该特征项在训练集中的集中度,而且还考虑该特征项在各个类别中的分散度。实验结果表明,采用ETFIDF计算特征权重可以有效地提高文本分类性能,对ETFIDF与特征选择的关系进行了较详细的理论分析和实验研究。实验结果表明,在文本表示阶段考虑特征与类别的关系可以更为准确地表示文本;如果综合考虑精度与效率两个方面因素,ETFIDF算法与特征选择算法一起采用能够得到更好的分类效果。  相似文献   

5.
基于TFIDF的文本特征选择方法   总被引:12,自引:3,他引:12  
本文在分析比较几种用于文本分类的特征选择方法的基础上,提出了一种基于术语频率和逆文档频率的特征选择方法TDF。采用KNN和NaiveBayes两种分类算法对该方法进行了测试。实验结果表明,TDF方法较其他几种方法有较好的分类精度。  相似文献   

6.
一种改进的特征权重算法   总被引:1,自引:0,他引:1       下载免费PDF全文
张瑜  张德贤 《计算机工程》2011,37(5):210-212
特征权重算法对文本分类系统的精确度有很大影响,传统的TFIDF算法未能考虑特征项在类间和类内的分布情况。为此,在对传统算法和相关改进算法进行分析的基础上,引入类间偏斜度、类内离散度和权重调整因子的改进思路,提出一种基于WA-DI-SI的特征权重改进算法,分别采用支持向量机和朴素贝叶斯2种分类算法进行测试。测试结果表明,与其他改进算法相比,该算法能够获得更好的分类效果。  相似文献   

7.
特征权重算法TF—IDF是文本分类的重要算法之一,该算法IDF值容易受特征噪声影响出现波动。提出一种基于特征噪声加权的特征权重改进算法,该算法通过分析噪声特征的分布特点,对不能准确表达文档真实意思的特征噪声进行加权,降低特征噪声对IDF的影响,最终有效地提高算法的精度和健壮性。  相似文献   

8.
提出一种基于关系权重的文本表示方法.通过优化关系权重,在文本向量中体现了不同特征项在不同类别中重要程度的差异,使得在此权重下不同类别的文本得到更准确的区分.运用SVM分类实验表明,基于关系权重的文本表示方法,较之传统的 TF-IDF 文本表示法,有更高的准确率和召回率.  相似文献   

9.
文本分类特征权重改进算法   总被引:4,自引:2,他引:4       下载免费PDF全文
台德艺  王俊 《计算机工程》2010,36(9):197-199
TF-IDF是一种在文本分类领域获得广泛应用的特征词权重算法,着重考虑了词频与逆文档频等因素,但无法把握特征词在类间与类内的分布情况。为提高在同类中频繁出现、类内均匀分布的具有代表性的特征词权重,引入特征词分布集中度系数改进IDF函数、用分散度系数进行加权,提出TF-IIDF-DIC权重函数。实验结果表明,基于TF-IIDF-DIC权重算法的K-NN文本分类宏平均F1值比TF-IDF算法提高了6.79%。  相似文献   

10.
文本分类特征权重改进算法   总被引:1,自引:2,他引:1       下载免费PDF全文
台德艺  王俊 《计算机工程》2010,36(9):197-199,
TF-IDF是一种在文本分类领域获得广泛应用的特征词权重算法,着重考虑了词频与逆文档频等因素,但无法把握特征词在类间与类内的分布情况。为提高在同类中频繁出现、类内均匀分布的具有代表性的特征词权重,引入特征词分布集中度系数改进IDF函数、用分散度系数进行加权,提出TF-IIDF-DIC权重函数。实验结果表明,基于TF-IIDF-DIC权重算法的K-NN文本分类宏平均F1值比TF-IDF算法提高了6.79%。  相似文献   

11.
文本情感分析领域内的特征加权一般考虑两个影响因子:特征在文档中的重要性(ITD)和特征在表达情感上的重要性(ITS)。结合该领域内两种分类准确率较高的监督特征加权算法,提出了一种新的ITS算法。新算法同时考虑特征在一类文档集里的文档频率(在特定的文档集里,出现某个特征的文档数量)及其占总文档频率的比例,使主要出现且大量出现在同一类文档集里的特征获得更高的ITS权值。实验证明,新算法能提高文本情感分类的准确率。  相似文献   

12.
    
Text representation is a necessary and primary procedure in performing text classification (TC), which first needs to be obtained through an information‐rich term weighting scheme to achieve higher TC performance. So far, term frequency‐inverse document frequency (TF‐IDF) is the most widely used term weighting scheme, but it suffers from two deficiencies. First, the global weighting factors IDF in TF‐IDF approaches infinity if a certain term does not occur in a text. Second, the IDF is equal to zero if a certain term appears in any text. To offset these drawbacks, we first conduct an in‐depth analysis of the current term weighting schemes, and subsequently, an improved term weighting scheme called term frequency‐inverse exponential frequency (TF‐IEF) and its various variants are proposed. The proposed method replaces IDF with the new global weighting factor IEF to characterize the global weighting factor log‐like IDF in the corpus, which can greatly reduce the effect of feature (term) with high local weighting factor TF in term weighting. As a result, a more representative feature can be generated. We carried out a series of experiments on two commonly used data sets (corpora) utilizing Naïve Bayes and support vector machine classifiers to validate the performance of our proposed schemes. Experimental results explicitly reveal that the proposed term weighting schemes come with better performance than the compared schemes.  相似文献   

13.
在文本分类系统中,特征选择方法是一种有效的降维方法.在分析了几种常用的特征选择评价函数之后,将权值计算函数应用于特征选择,并基于改进的TFIDF方法提出了一种新的评价函数,它将类别信息引入到特征项中,提取出与类别相关的特征项,弥补了TFIDF的缺陷.实验证明该方法简单可行,有助于提高所选特征子集的有效性.  相似文献   

14.
该文提出了基于维基百科类别体系的文本特征表示方法,方法是将文本中的词映射到维基百科的类别体系中,使用类别作为特征来对文本进行表示。基于维基类别的文本特征表示方法可以增强文本特征表示能力,降低文本特征空间维数。针对维基百科条目在语料中覆盖度不足的问题,该文提出了一种基于全局信息自学习维基百科类别的方法。该文构造基于维基百科类别为文本表示的分类系统,实验结果证明,基于维基百科类别作为文本表示特征,相对于词袋模型,具有明显的降维效果,在当特征数量较少时(如:<700),分类的F1值提高了5.14%。  相似文献   

15.
非凸在线支持向量机(LASVM-NC)具有抗噪能力强和训练速度快的优点,而词频相关频率积(tf.rf)则是一种自适应能力很强、分类性能非常好的文本特征。通过把非凸在线支持向量机和词频相关频率积相结合,提出了一种新的文本分类方法,即LASVM-NC+tf.rf。实验结果表明,这种方法在LASVM-NC与多种其他特征的结合中性能是最好的,且与SVM+tf.rf相比,不仅所产生的分类器具有泛化能力更强、模型表达更稀疏的优点,而且在处理含噪声的数据时具有更好的鲁棒性,在处理大规模数据时具有快得多的训练速度。  相似文献   

16.
张卓  雷晏  毛晓光  常曦  薛建新  熊庆宇 《软件学报》2020,31(11):3448-3460
错误定位方法大多通过分析语句覆盖信息来标识出导致程序失效的可疑语句.其中,语句覆盖信息通常以语句执行或语句未执行的二进制状态信息来表示.然而,该二进制状态信息仅表明该语句是否被执行的信息,无法体现该语句在具体执行中的重要程度,可能会降低错误定位的有效性.为了解决这个问题,提出了基于词频-逆文件频率的错误定位方法.该方法采用词频-逆文件频率技术识别出单个测试用例中语句的影响程度高低,从而构建出具有语句重要程度识别度的信息模型,并基于该模型来计算语句的可疑值.实验结果表明,该方法大幅提升了错误定位的效能.  相似文献   

17.
随着信息技术的发展,文本信息数据正在爆炸式增长,从众多的文本数据中有效地获取有用信息是一个值得研究的问题。针对该任务提出基于层次特征提取的文本分类模型,考虑文本中句子级别的语义内容以及文本级别的语义内容,依次使用两种神经网络模型建模句子级的语义内容和文本级的语义内容,从而得到关于文本的全面特征,进而基于此特征对文本进行分类。实验结果表明,该方法能够更加准确地提取文本的特征,具有更高的分类准确度。  相似文献   

18.
特征选择是维吾尔语文本分类的关键技术,对分类结果将产生直接的影响。为了提高传统信息增益在维吾尔文特征选择中的效果,在深度分析维吾尔文语种特点的基础上,提出了一种新的信息增益特征选择方法。该方法结合类词频和特征分布系数以及倒逆文档频率,对传统信息增益进行修正;引入一个备选特征分布系数来平衡类间选取的特征个数;在维吾尔文数据集上实验验证。实验结果表明,改进的算法对维吾尔文分类效果有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号