共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
3.
面对海量数据的管理和分析,文本自动分类技术必不可少。特征权重计算是文本分类过程的基础,一个好的特征权重算法能够明显提升文本分类的性能。本文对比了多种不同的特征权重算法,并针对前人算法的不足,提出了基于文档类密度的特征权重算法(tf-idcd)。该算法不仅包括传统的词频度量,还提出了一个新的概念,文档类密度,它通过计算类内包含特征的文档数和类内总文档数的比值来度量。最后,本文在两个中文常见数据集上对五种算法进行实验对比。实验结果显示,本文提出的算法相比较其他特征权重算法在F1宏平均和F1微平均上都有较大的提升。 相似文献
4.
郭红钰 《计算机工程与应用》2013,49(10):140-146
文本表示是使用分类算法处理文本时必不可少的环节,文本表示方法的选择对最终的分类精度起着至关重要的作用。针对经典的特征权重计算方法TFIDF(Term Frequency and Inverted Document Frequency)中存在的不足,提出了一种基于信息熵理论的特征权重算法ETFIDF(Entropy based TFIDF)。ETFIDF不仅考虑特征项在文档中出现的频率及该特征项在训练集中的集中度,而且还考虑该特征项在各个类别中的分散度。实验结果表明,采用ETFIDF计算特征权重可以有效地提高文本分类性能,对ETFIDF与特征选择的关系进行了较详细的理论分析和实验研究。实验结果表明,在文本表示阶段考虑特征与类别的关系可以更为准确地表示文本;如果综合考虑精度与效率两个方面因素,ETFIDF算法与特征选择算法一起采用能够得到更好的分类效果。 相似文献
5.
基于TFIDF的文本特征选择方法 总被引:12,自引:3,他引:12
本文在分析比较几种用于文本分类的特征选择方法的基础上,提出了一种基于术语频率和逆文档频率的特征选择方法TDF。采用KNN和NaiveBayes两种分类算法对该方法进行了测试。实验结果表明,TDF方法较其他几种方法有较好的分类精度。 相似文献
6.
7.
8.
提出一种基于关系权重的文本表示方法.通过优化关系权重,在文本向量中体现了不同特征项在不同类别中重要程度的差异,使得在此权重下不同类别的文本得到更准确的区分.运用SVM分类实验表明,基于关系权重的文本表示方法,较之传统的 TF-IDF 文本表示法,有更高的准确率和召回率. 相似文献
9.
10.
11.
非凸在线支持向量机(LASVM-NC)具有抗噪能力强和训练速度快的优点,而词频相关频率积(tf.rf)则是一种自适应能力很强、分类性能非常好的文本特征。通过把非凸在线支持向量机和词频相关频率积相结合,提出了一种新的文本分类方法,即LASVM-NC+tf.rf。实验结果表明,这种方法在LASVM-NC与多种其他特征的结合中性能是最好的,且与SVM+tf.rf相比,不仅所产生的分类器具有泛化能力更强、模型表达更稀疏的优点,而且在处理含噪声的数据时具有更好的鲁棒性,在处理大规模数据时具有快得多的训练速度。 相似文献
12.
郑安怡 《计算机工程与应用》2015,51(21):30-35
文本情感分析领域内的特征加权一般考虑两个影响因子:特征在文档中的重要性(ITD)和特征在表达情感上的重要性(ITS)。结合该领域内两种分类准确率较高的监督特征加权算法,提出了一种新的ITS算法。新算法同时考虑特征在一类文档集里的文档频率(在特定的文档集里,出现某个特征的文档数量)及其占总文档频率的比例,使主要出现且大量出现在同一类文档集里的特征获得更高的ITS权值。实验证明,新算法能提高文本情感分类的准确率。 相似文献
13.
文本分类是研究文本数据挖掘、信息检索的重要手段,文本特征项权重值的计算是文本分类算法的关键。针对经典的特征权重计算方法TF-IDF中存在的不足,提出了一种动态自适应特征权重计算方法(DATW)。该算法不仅考虑了特征项在文本中出现的频率及该特征项所属文本在训练集中的数量,而且通过考查特征项的分散度和特征向量梯度差以自适应动态文本的分类。实验结果表明,采用DATW方法计算特征权重可以有效提高文本分类的性能。 相似文献
14.
在文本分类系统中,特征选择方法是一种有效的降维方法.在分析了几种常用的特征选择评价函数之后,将权值计算函数应用于特征选择,并基于改进的TFIDF方法提出了一种新的评价函数,它将类别信息引入到特征项中,提取出与类别相关的特征项,弥补了TFIDF的缺陷.实验证明该方法简单可行,有助于提高所选特征子集的有效性. 相似文献
15.
基于频繁词集聚类的海量短文分类方法 总被引:1,自引:0,他引:1
信息技术的飞速发展造成了大量的文本数据累积,其中很大一部分是短文本数据.文本分类技术对于从这些海量短文中自动获取知识具有重要意义.但是对于关键词出现次数少的短文,现有的一般文本挖掘算法很难得到可接受的准确度.一些基于语义的分类方法获得了较好的准确度但又由于其低效性而无法适用于海量数据.针对这个问题提出了一个新颖的基于频繁词集聚类的短文分类算法.该算法使用频繁词集聚类来压缩数据,并使用语义信息进行分类.实验表明该算法在对海量短文进行分类时,其准确度和性能超过其它的算法. 相似文献