首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对页岩储层复杂的孔隙结构,运用低温氮气吸附实验,优选非定域密度泛函(NLDFT)计算方法,对吸附数据进行处理,实现对富有机质页岩样品纳米级孔隙微孔和介孔的连续测量。实验结果表明:滇黔北地区龙马溪组下部富有机质页岩既发育微孔,也发育介孔,页岩纳米级孔隙呈狭缝型和墨水瓶状,平均比表面积为14.24 m~2/g,平均孔体积为12.99 mm~3/g,微孔提供了绝大多数的比表面积;有机碳含量是影响滇黔北地区龙马溪组富有机质页岩纳米级孔隙发育的主控因素,黏土矿物含量的增大降低了页岩的比表面积。  相似文献   

2.
基于氮气吸附实验的页岩孔隙结构表征   总被引:17,自引:0,他引:17  
页岩储层微观孔隙结构研究对页岩含气性评价具有重要意义。为此,采用低温氮气吸附法,对宁夏六盘山盆地下白垩统乃家河组页岩样品的微观孔隙结构进行了实验研究,计算了页岩的比表面积、孔径分布、孔体积和平均孔径等孔隙结构参数,并探讨了页岩孔隙发育的控制因素及孔隙结构对页岩气存储的意义。实验结果表明:①页岩平均孔径为3.6~4.3 nm,主体孔隙为中孔,也含有一定量的微孔和大孔,孔隙形状以平行板状和墨水瓶孔为主,同时具有无定形孔特征;②页岩比表面积和孔体积远大于常规储层岩石,孔径小于50 nm的微孔和中孔提供了主要的比表面积和孔体积,构成了页岩中气体吸附存储的主要空间;③页岩微孔、中孔的发育与有机质有关,有机碳含量与微孔、中孔的比表面积、孔体积呈正相关性,页岩大孔的发育与黏土矿物含量有关,黏土矿物含量增加,大孔的比表面积和孔体积都增大。  相似文献   

3.
为了研究页岩储层微观孔隙结构特征,以川南地区龙马溪组页岩为研究对象,应用场发射扫描电镜(FE-SEM)定性描述页岩镜下孔隙形态及确定其类型,创新使用低温氩气(Ar)吸附实验测量页岩样品的比表面积、孔体积以及孔径分布,实现了页岩小于100 nm(纳米级)孔隙的连续测量,并根据FrenkelHalsey-Hill(FHH)模型研究了页岩孔隙结构的分形特征,探讨了有机质对页岩孔隙结构及分形特征的影响。结果表明:川南地区龙马溪组页岩储层主要发育有机质孔、粒间孔及粒内孔,并以有机质孔为主。Ar吸附等温线表明,纳米级孔隙以狭缝型为主,孔径主体分布在10 nm以下的微孔和介孔中,呈“三峰”特征,微孔主要集中在0.6~0.9 nm以及1.8~2.0 nm,介孔主要集中在4.0~5.0 nm。纳米级孔隙分形维数为2.55~2.64,表现出较强的非均质性。有机碳(TOC)含量控制了页岩纳米级孔隙的发育,TOC含量的增加使得页岩中微孔及其所占比例增高,分形维数增大,孔隙结构趋于复杂,有利于页岩储层吸附能力的增强。该研究成果对川南地区龙马溪组页岩储层纳米级孔隙结构特征研究具有重要意义。  相似文献   

4.
高压压汞法和氮气吸附法分析页岩孔隙结构   总被引:16,自引:0,他引:16  
页岩储层的孔隙结构对页岩含气性评价和勘探开发具有重要意义,但目前国内对于页岩孔隙结构的研究相对较少.为此,采用高压压汞实验和低温氮气吸附实验对页岩的孔隙结构进行了研究,计算了页岩的孔隙结构参数,并结合微观孔隙结构图片分析了页岩孔隙结构对气体吸附和渗流的意义.研究表明,页岩孔隙以微孔和过渡孔为主,微孔和过渡孔提供了大部分孔体积.有机质中的微孔是页岩比表面积的主要贡献者,构成了页岩气体的主要吸附空间.页岩的孔隙类型复杂,孔隙形态多样,存在一端封闭的不透气性孔、开放性的透气性孔和墨水瓶孔等多种孔隙,且孔隙之间的连通性较差.较高的微孔和过渡孔保证了页岩储层具有很高的吸附聚气能力,但中孔和大孔发育较差,不利于气体渗流和页岩气藏的开发.  相似文献   

5.
以鄂尔多斯盆地延安地区上古生界二叠系山西组泥页岩储层为研究对象,通过核磁共振、扫描电镜、高压压汞、氮气吸附以及二氧化碳吸附等实验,对泥页岩储层进行了详细的全孔隙表征。研究区山西组主要发育粒间孔、粒内孔、裂缝及有机质孔四类孔隙类型,以粒内孔和有机质孔居多。核磁共振T2谱曲线多以单峰分布,离心后曲线几乎无变化,说明样品中含有较多的纳米级孔隙,并且连通性较差。高压压汞、氮气吸附、二氧化碳吸附实验表明,孔隙体积以中孔和宏孔为主,二者占孔总体积的85%左右,微孔仅占总孔体积的15%;而比表面积主要由微孔和中孔提供,微孔占总比表面积的51.94%,中孔占47.98%,二者占总比表面积的99%以上,宏孔可以忽略不计;样品孔隙形态以两端开孔或狭缝型的平行板孔为主。   相似文献   

6.
四川盆地长宁地区下志留统龙马溪组页岩广泛发育,该地区页岩储层的微观孔隙结构及全尺度孔径分布特征尚不明确,运用聚焦离子束扫描电镜、高压压汞、低温氮吸附及低温CO2吸附等实验技术,以宁203井为例,研究了龙马溪组下部页岩储层的孔隙结构特征,并建立了一套页岩纳—微米全尺度孔径分布测试分析方法。该方法利用气体吸附法和高压压汞法获得第1孔径分布数据和第2孔径分布数据,通过对2种方法获得的重复部分孔径分布数据进行差异性分析,并根据分析判断结果获取处理后的孔径为3.7~200.0 nm的分布数据,再结合2种方法获得的不重复部分的孔径分布数据,从而可以计算微孔、介孔和宏孔在整个岩石样品中的占比,获得岩石样品全尺度孔径分布数据。结果表明:该区龙马溪组下部页岩孔隙结构复杂,“墨水瓶”状细颈孔隙大量存在,微孔与中孔、大孔相互连通,但孔喉细小,连通性较差;介孔和微孔占比超过80%。直径> 15 nm的孔喉中主要为游离气,直径< 2 nm的孔喉中主要为吸附气。  相似文献   

7.
川南地区龙马溪组页岩气储层微孔隙结构特征   总被引:4,自引:0,他引:4  
应用扫描电子显微镜、高压压汞法、N2和CO2气体吸附法,对川南地区下志留统龙马溪组海相页岩气储层孔隙微观特征和孔隙结构进行了研究,探讨了页岩孔隙发育的主要影响因素。结果表明,川南地区龙马溪组海相页岩样品中发育多种类型微观孔隙,常见有黏土矿物粒间孔、黄铁矿晶间孔、碳酸盐颗粒溶蚀孔、生物碎屑粒内孔、颗粒边缘溶蚀孔和有机质孔;龙马溪组富有机质页岩发育大量的微米—纳米级孔隙,为页岩气赋存提供了储集空间。龙马溪组页岩样品中孔隙以微孔和介孔为主,宏孔较少;孔隙结构形态主要为平板狭缝型孔、圆柱孔和混合型孔,孔径为0.4~1nm、3~20nm;微孔和介孔占孔隙总体积的78.17%,占比表面积的83.92%,是龙马溪组页岩储气空间的主要贡献者。页岩有机碳含量、成熟度和矿物成分含量均会影响川南地区龙马溪组海相页岩孔隙的发育,总体上页岩孔隙体积随有机碳含量增加而增大;页岩孔隙度随成熟度增加而降低;黏土矿物和脆性矿物含量对页岩孔隙发育也有一定的影响。  相似文献   

8.
页岩储层微观孔隙结构特征   总被引:85,自引:3,他引:85  
为了研究页岩储层的微观孔隙结构特征,应用场发射环境扫描电子显微镜观察了页岩表面纳米级孔隙微观形态,并通过低温氮吸附法测定了页岩的氮气吸附等温线,同时结合高压压汞实验对页岩储层孔隙结构进行了深入研究。研究结果表明:页岩储层孔隙处于纳米量级,孔隙类型可分为有机质纳米孔、黏土矿物粒间孔、岩石骨架矿物孔、古生物化石孔和微裂缝5种类型,其中有机质纳米孔和黏土矿物粒间孔发育最为广泛;页岩孔径分布复杂,既含有大量的中孔(2~50nm),又含有一定量的微孔(<2nm)和大孔(>50nm);孔径小于50nm的微孔和中孔提供了大部分比表面积和孔体积,是气体吸附和存储的主要场所;页岩阈压非常高,孔喉分选性好,连通性差,退汞效率低,中孔对气体渗流起明显贡献作用,微孔则主要起储集作用。  相似文献   

9.
蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力   总被引:3,自引:0,他引:3  
以蜀南地区龙马溪组下部富有机质页岩为研究对象,通过场发射扫描电镜(FE-SEM)、低压氩气吸附实验和重力法高压甲烷吸附实验,研究页岩孔隙结构特征及超临界状态下页岩储层的甲烷吸附能力,并讨论了页岩孔隙结构对甲烷吸附能力的影响。研究表明,蜀南地区龙马溪组富有机质页岩主要发育有机质孔隙,页岩孔隙结构非均质性强,比表面积为16.846~63.738 m2/g,孔体积为0.050~0.092 cm3/g,微孔和介孔贡献页岩90%以上的比表面积,介孔和宏孔贡献页岩90%以上的孔体积。甲烷在地层条件下处于超临界状态,过剩吸附曲线在约12 MPa时出现极大值,随后开始下降。使用修正过的四元Langmuir-Freundlich (L-F)方程拟合高温甲烷过剩吸附曲线,拟合效果较好,相关系数大于0.997。页岩饱和吸附量为0.067 0~0.220 2 mmol/g,不同页岩样品吸附能力差异明显。海相富有机质页岩中,随着有机质含量的增大,有机质孔隙数量增多,且页岩中微孔比例增大,微孔的吸附能力远大于介孔和宏孔,故页岩吸附能力增强。有机质含量是影响蜀南地区海相富有机质页岩孔隙结构和甲烷吸附能力的主要因素。  相似文献   

10.
利用扫描电镜以及比表面积分析仪产生的试验数据、吸附脱附曲线对页岩气储层储集空间类型、微观孔隙结构的系统研究表明,川南—黔北XX地区龙马溪组页岩气储层储集空间多样,包括残余原生粒间孔、晶间孔、矿物铸模孔、次生溶蚀孔、黏土矿物间微孔、有机质孔以及构造裂缝、成岩收缩微裂缝、层间页理缝、超压破裂缝等基质孔隙和裂缝类型。发现研究区龙马溪组泥页岩比表面积和孔体积都较大且具有良好的正相关性,并认为微孔隙越发育,泥页岩的比表面积和孔体积越大,越有利于泥页岩对页岩气的吸附储集。建立了泥页岩的孔隙模型,并利用吸附脱附曲线分析了研究区龙马溪组泥页岩的微观孔隙结构特征,指出研究区龙马溪组泥页岩以极为发育的微孔为主,其中为泥页岩提供最大量孔体积和表面积的孔隙主要为Ⅲ类细颈瓶状(墨水瓶状)孔和Ⅰ类开放透气性孔。认为有机碳含量、伊/蒙间层矿物含量以及热演化程度是控制研究区龙马溪组页岩气储层微观孔隙结构的主要因素。  相似文献   

11.
基于氩离子抛光扫描电镜、吸附脱附实验等方法,对四川盆地平桥地区五峰组-龙马溪组下部页岩微观孔隙进行了研究。结果表明,富有机质的硅质页岩和碳质页岩微观孔隙以有机孔和微裂缝为主;孔隙结构相对复杂,孔隙形态丰富,孔径范围较大。吸附脱附实验显示,该页岩既有狭窄的平行板片状孔、少量的锥形平板孔和楔形孔,孔隙连通性相对差,又有规则开放圆孔与一端开口的墨水瓶状孔,孔隙开放性、连通性相对好。氩离子抛光扫描电镜法测量有机孔以细介孔为主且偏向微孔;吸附法测量比表面积为9~32.6 m^2/g,平均18.0 m^2/g,值偏低,BET法孔径为3.23~4.35 nm,BJH法孔容平均0.016 5 cm^3/g,以细介孔为主,且偏向微孔界线。综合分析认为,研究区页岩储层微观孔隙以细介孔为主,且介孔和微孔贡献了绝大部分的比表面积。  相似文献   

12.
页岩储层特性是影响页岩气富集和开采的关键因素之一。四川盆地北部发育的上二叠统大隆组是重要的海相优质烃源岩,而针对川东北地区大隆组页岩储层的研究还有待深入。以川东北地区大隆组深层页岩为研究对象,利用高分辨率场发射扫描电镜、二氧化碳吸附、氮吸附及高压压汞等技术,开展大隆组深层页岩储层不同孔径孔隙结构的定性—定量研究,并运用基于二氧化碳吸附的V-S模型、氮吸附的FHH模型和高压压汞的分形几何模型对不同孔径的孔隙进行分形拟合,表征页岩孔隙结构的复杂程度和非均质性特征。结果表明,川东北地区大隆组深层页岩储层发育丰富的纳米级有机孔和少量的无机孔,有机孔发育特征随有机质显微组分不同和分布形式差异而显示强的非均质性。大隆组深层页岩孔隙结构与龙马溪组深层页岩相似,以介孔和微孔为主,占总孔体积的90%以上;页岩孔隙结构主要受有机质丰度的影响。分形特征研究结果显示,深层页岩宏孔非均质性强于介孔和微孔。其原因可能为深层页岩微孔孔径较小,分布集中,成因单一,受成岩作用影响较小,孔隙结构较为简单,具有较小分形维数;而宏孔孔径较大,分布范围较广,成因多样,易受成岩作用影响,表现出强非均质性。深层页岩微孔—介孔因其丰...  相似文献   

13.
为了评价海陆过渡相煤系页岩气储层性质,采用扫描电镜、高压压汞、低温液氮和CO2吸附等实验方法,对川南地区二叠系龙潭组页岩微观孔隙的发育情况、结构特征进行研究,并分析龙潭组页岩孔隙发育的主要影响因素。结果表明:川南地区龙潭组页岩储集空间多样,常见粒间孔、溶蚀孔和有机质孔,孔隙形态以圆形、椭圆形、三角形、不规则状为主,这些微观孔隙为页岩气赋存提供储集空间。龙潭组页岩纳米级孔隙以微孔和介孔为主,占孔隙总体积的56.2%,占总比表面积的80%以上,是页岩气赋存的主要载体;孔容与比表面积呈正相关性,其中介孔(BJH)孔容、微孔(DFT)孔容与比表面积线性关系拟合较好;页岩孔隙结构类型主要以平板狭缝型、柱形和混合型为主,孔径主要分布于0.2~1nm、3~30nm之间,平均为4.66nm。龙潭组页岩气储层孔隙发育受页岩的有机碳含量和成熟度影响较大,孔隙度和孔容随有机碳含量增大而增大,并与成熟度有密切关系;黏土矿物一定程度上利于储层孔隙发育,与页岩总孔容呈正相关性,脆性矿物则相反。  相似文献   

14.
渝东南龙马溪组页岩储层特征及吸附影响因素分析   总被引:1,自引:0,他引:1  
页岩的天然气吸附能力对储层含气性评价和资源储量预侧至关重要。文中通过低温氮气吸附实验,对渝东南地区下志留统龙马溪组页岩岩心样品的微观孔隙结构进行了研究,计算了纳米孔隙结构参数;综合运用等温吸附实验侧量岩心样品的甲烷吸附能力,分析饱和吸附量与孔隙结构、有机碳质量分数、矿物组成的相关性,探讨了页岩吸附能力的主控因素。结果表明,孔径小于50 nm的微孔和中孔是主要的孔隙类型,为吸附气提供了有效储存空间;有机碳质量分数控制了纳米孔隙体积和比表面积的发育,是影响页岩吸附能力的决定性因素,而拈土矿物成分对页岩的吸附性贡献不大.  相似文献   

15.
针对页岩储层微观非均质性强、孔径分布广泛的特点,使用氩气作为吸附质,通过87 K下的低温氩气吸附实验,研究蜀南地区五峰-龙马溪组富有机质页岩样品的微观孔隙结构特征,并探讨了有机碳含量对页岩微观孔隙结构的影响。结果表明:页岩孔隙呈狭缝型,富有机质页岩样品平均比表面积31.65 m2/g,平均孔体积0.062 2 cm3/g,小于50 nm的微孔和介孔贡献了页岩孔隙中90%以上的比表面积,2~100 nm的介孔和宏孔贡献了页岩孔隙中90%以上的孔体积。有机质含量是影响富有机质页岩微观孔隙发育的主要因素,随着页岩中有机碳含量的增高,页岩比表面积、孔体积增大,微孔占比增多,孔隙表面分形维数增大,孔隙结构非均质性增强,页岩的吸附能力增强。   相似文献   

16.
以四川盆地东南部重庆地区下志留统龙马溪组页岩为研究对象,通过场发射扫描电镜、CO2及N2低温低压吸附实验,探讨海相页岩储层微-纳米孔孔隙结构特征及其控制因素。结果表明:龙马溪组页岩发育有机孔、粒间孔、粒内孔、晶间孔、溶蚀孔和微裂缝6种孔隙类型,其中有机孔、黏土矿物层间粒内孔最为发育,由于热演化程度高也发育大量的溶蚀孔隙;龙马溪组页岩BET比表面积介于3.5~18.1 m2/g,BJH总孔容介于0.00234~0.01338 cm3/g,DA微孔比表面积介于1.3~7.3 m2/g,DA微孔孔容介于0.00052~0.00273 cm3/g。页岩微孔比表面积占总比表面积的23.1%~80.2%,平均占比50.3%,微孔孔容占总孔容的12.1%~48.5%,平均占比32.3%,微孔提供比表面积的能力远大于中孔和宏孔,是页岩储层中甲烷吸附的主要场所;泥页岩孔径分布复杂,孔径分布曲线存在多个不同的峰值,在0~100 nm范围内主要呈现双峰或三峰特征,偶见四峰特征;有机碳含量与泥页岩微孔、中孔+宏孔及总孔的孔隙结构参数均呈现非常好的线性关系,表明TOC是泥页岩中微-纳米孔隙结构最重要的控制因素,将孔隙结构参数对TOC进行归一化处理后,总孔和中孔+宏孔孔隙结构参数与黏土矿物含量呈正线性关系,与脆性矿物含量呈负线性关系,表明黏土矿物和脆性矿物主要控制页岩的中孔和宏孔的发育。  相似文献   

17.
为精细表征页岩储层微孔结构,采用低温二氧化碳吸附法,测定了临兴地区石炭系上统太原组和二叠系下统山西组页岩样品二氧化碳吸附等温线,计算并对比了山西组和太原组页岩的比表面积、单分子层吸附面积、总孔容等孔隙结构参数,探讨了页岩微孔发育的控制因素。研究表明:临兴地区山西组和太原组页岩微孔较为发育,页岩TOC含量越高,微孔比表面积越大,黏土矿物含量越丰富,总孔容越大;热成熟度对临兴地区页岩微孔发育影响不大。受沉积环境的影响,陆相的山西组页岩有机质、黏土矿物含量较海相的太原组页岩更高,因而山西组页岩具有更大的比表面积和总孔容,页岩气的吸附存储能力更强。  相似文献   

18.
基于钻井资料、岩心样品实验数据,运用有机地球化学、有机岩石学和储层孔隙分析的多种实验方法,对川南地区下古生界筇竹寺组和龙马溪组2套页岩有机质特征、孔隙度、页岩气储层微观孔隙特征与孔隙结构进行了研究。结果表明,川南地区下古生界页岩有机碳含量较高(多数TOC2.0%)、热成熟度高(ROm=2.3%~3.8%)、孔隙度低(1.16%~6.87%);筇竹寺组页岩有机碳含量和热成熟度高于龙马溪组页岩,而其孔隙度低于龙马溪组页岩;下古生界龙马溪组和筇竹寺组页岩存在粒间孔、溶蚀孔、晶间孔、粒内孔和有机质孔等多种孔隙类型;龙马溪组页岩中微米—纳米级孔隙较筇竹寺组页岩发育,常见有机质孔、粒间孔和粒内孔,是页岩气赋存的主要储集空间;下古生界页岩微观孔隙以微孔和介孔为主,宏孔较少,筇竹寺组页岩微孔+介孔孔容比例占总孔容的83.92%,龙马溪组页岩微孔+介孔孔容比例占总孔容的78.17%,表明微孔和介孔是川南地区下古生界页岩气储层纳米级孔隙的主要贡献者。  相似文献   

19.
为探索富有机质泥页岩的储层特征,利用全岩 X-射线衍射、比表面—孔径分布、等温吸附、有机碳、有机质成熟度等测试方法,对鄂尔多斯盆地东南部山西组泥页岩储层的矿物组成、孔隙体积和孔隙结构进行了综合研究。结果表明:泥页岩矿物组成主要为黏土矿物和陆源碎屑矿物石英、长石,含少量黄铁矿和菱铁矿等矿物;有机碳含量平均为 3.03%,有机质成熟度平均为 2.55%,CH4饱和吸附量平均为 1.91m3/t;泥页岩孔隙结构以中孔隙为主,泥页岩储层中主要是黏土矿物控制着中孔、宏孔的发育,TOC 含量与微孔体积呈微弱的正相关关系;饱和吸附量与黏土矿物(尤其是伊利石)和有机碳含量呈正相关性。  相似文献   

20.
以四川盆地及周缘地区下志留统龙马溪组富有机质页岩为研究对象,通过氩离子抛光—扫描电镜、低温液氮吸附/脱附实验等方法和技术,对研究区页岩储层微观孔隙结构进行系统研究,并探讨了控制纳米尺度微观孔隙结构的主要原因。结果表明:四川盆地及周缘地区龙马溪组富有机质页岩孔径范围为纳米级,孔隙类型多样,分为有机孔、粒间孔、粒内孔、晶间孔、溶蚀孔及微裂缝等,其中有机孔和粒内孔较为发育;页岩微观孔隙结构复杂,多为开放型孔隙,以管孔和两端开口的平行板孔为主;微观孔隙孔径主要分布在2~80nm,以中孔为主。通过分析控制该区页岩储层微观孔隙结构的主要因素,认为有机碳含量是控制纳米级孔隙发育的主要因素,同时也是页岩气赋存的重要物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号