首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A CMOS transconductor uses resistors at the input and an OTA in unity-gain feedback to achieve 80-dB spurious-free dynamic range (SFDR) for 3.6-Vpp differential inputs up to 10 MHz. The combination of resistors at the input and negative feedback around the operational transconductance amplifier (OTA) allows this transconductor to accommodate a differential input swing of 4 V with a 3.3-V supply. The total harmonic distortion (THD) of the transconductor is -77 dB at 10 MHz for a 3.6-Vpp differential input and third-order intermodulation spurs measure less than -79 dBe for 1.8-Vpp differential inputs at 1 MHz. The transconductance core dissipates 10.56 mW from a 3.3-V supply and occupies 0.4 mm2 in a 0.35-μm CMOS process  相似文献   

2.
A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR   总被引:6,自引:0,他引:6  
A 1.8-V 14-b 12-MS/s pseudo-differential pipeline analog-to-digital converter (ADC) using a passive capacitor error-averaging technique and a nested CMOS gain-boosting technique is described. The converter is optimized for low-voltage low-power applications by applying an optimum stage-scaling algorithm at the architectural level and an opamp and comparator sharing technique at the circuit level. Prototyped in a 0.18-/spl mu/m 6M-1P CMOS process, this converter achieves a peak signal-to-noise plus distortion ratio (SNDR) of 75.5 dB and a 103-dB spurious-free dynamic range (SFDR) without trimming, calibration, or dithering. With a 1-MHz analog input, the maximum differential nonlinearity is 0.47 LSB and the maximum integral nonlinearity is 0.54 LSB. The large analog bandwidth of the front-end sample-and-hold circuit is achieved using bootstrapped thin-oxide transistors as switches, resulting in an SFDR of 97 dB when a 40-MHz full-scale input is digitized. The ADC occupies an active area of 10 mm/sup 2/ and dissipates 98 mW.  相似文献   

3.
This paper proposes a high-speed CMOS transconductor with its linearity enhanced by current–voltage negative feedback. This voltage-to-current converter is mainly composed of two parts: an operational transconductance amplifier and a pair of feedback resistors. The measured spurious-free dynamic range of the transconductor achieves 72.6 dB when the input frequency is 100 MHz. To compensate for common-mode deviation due to process and temperature variation, digital calibration circuits are added. With the proposed calibration scheme, the common-mode voltage deviation is eliminated within 24 clock cycles. Fabricated in TSMC 0.13-$muhbox{m}$ CMOS process, the transconductor occupies 220 $,times,$160 $muhbox{m}^{2}$ active area and consumes 6 mW from a 1.2-V supply where the calibration circuits only consume 16% of the overall power consumption.   相似文献   

4.
赵南  魏琦  杨华中  汪蕙 《半导体学报》2014,35(9):095009-8
This paper demonstrates a 14-bit 100 MS/s CMOS pipelined analog-to-digital converter (ADC). The nonlinearity model for bootstrapped switches is established to optimize the design parameters of bootstrapped switches, and the calculations based on this model agree well with the measurement results. In order to achieve high linearity, a gradient-mismatch cancelling technique is proposed, which eliminates the first order gradient error of sampling capacitors by combining arrangement of reference control signals and capacitor layout. Fabricated in a 0.18-μm CMOS technology, this ADC occupies 10.16-mm2 area. With statistics-based background calibration of finite opamp gain in the first stage, the ADC achieves 83.5-dB spurious free dynamic range and 63.7-dB signalto-noise-and distortion ratio respectively, and consumes 393 mW power with a supply voltage of 2 V.  相似文献   

5.
A high linearity, undersampling 14-bit 357 kSps cyclic analog-to-digital convert (ADC) is designed for a radio frequency identification transceiver system. The passive capacitor error-average (PCEA) technique is adopted for high accuracy. An improved PCEA sampling network, capable of eliminating the crosstalk path of two pipelined stages, is employed. Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area. An additional digital calibration block is added to compensate for the error due to defective layout design. The presented ADC is fabricated in a 180 nm CMOS process, occupying 0.65 × 1.6 mm~2.The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range (SFDR),and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.  相似文献   

6.
This paper presents a second-order ΔΣ modulator for audio-band analog-to-digital conversion implemented in a 3.3-V, 0.5-μm, single-poly CMOS process using metal-metal capacitors that achieves 98-dB peak signal-to-noise-and-distortion ratio and 105-dB peak spurious-free dynamic range. The design uses a low-complexity, first-order mismatch shaping 33-level digital-to-analog converter and a 33-level flash analog-to-digital converter with digital common-mode rejection and dynamic element matching of comparator offsets. These signal-processing innovations, combined with established circuit techniques, enable state-of-the art performance in CMOS technology optimized for digital circuits  相似文献   

7.
本文为射频标签(RFID)收发机系统设计了一个高线性,14位357 k采样率的欠采样循环模数转换器。为提高模数转换器的精度,设计中采用了有源电容误差平均(PCEA)技术。并且提出了一种改进的PCEA采样网络,可以消除两个流水级之间的串扰影响。为降低模数转换器的功耗和减小面积,设计采用了运放共享技术,并且去除了采样保持放大级。为补偿不完善的版图设计引入的误差,增加了一个附加的数字校准模块。该模数转换器由180 nm CMOS工艺流水完成,面积为0.65 mm  1.6 mm。在确保SFDR不低于90 dB的条件下,该欠采样模数转换器的输入信号频率高达15.5 MHz;在2.431 MHz输入下,峰值SFDR高达106.4 dB.  相似文献   

8.
赵南  罗华  魏琦  杨华中 《半导体学报》2014,35(7):075006-6
This paper describes a 14-bit 100-MS/s calibration-free pipelined analog-to-digital converter (ADC). Choices for stage resolution as well as circuit topology are carefully considered to obtain high linearity without any calibration algorithm. An adjusted timing diagram with an additional clock phase is proposed to give residue voltage more settling time and minimize its distortion. The ADC employs an LVDS clock input buffer with low-jitter consideration to ensure good performance at high sampling rate. Implemented in a 0.18-μm CMOS technology, the ADC prototype achieves a spurious free dynamic range (SFDR) of 85.2 dB and signal-to-noise-and-distortion ratio (SNDR) of 63.4 dB with a 19.1-MHz input signal, while consuming 412-mW power at 2.0-V supply and occupying an area of 2.9 × 3.7 mm^2.  相似文献   

9.
This work describes a method for analysis of voltage-to-current converters (V-I converters or transconductors) and a novel V- I converter circuit with significantly improved linearity. The new circuit utilizes a combination of cross-coupling and local resistive feedback for a significant, simultaneous suppression of the third- and fifth-order harmonic distortion components in the transconductor characteristics. An evaluation of the optimal circuit dimensioning is shown. Simple and robust design rules are derived for the chosen operation conditions. The transistor implementation is presented and a prototype V- I converter is realized in a digital 0.18-/spl mu/m CMOS technology. The measured spurious-free dynamic range is 75 dB in a frequency band of 10 MHz. The circuit occupies less than 0.02 mm/sup 2/ and dissipates 360 /spl mu/W.  相似文献   

10.
A CMOS operational amplifier that has a common-mode rejection ratio (CMRR), a power-supply rejection ratio (PSRR), and gain above 100 dB for each of these parameters is described. This is achieved by combining a high output-impedance tail current source with a stable drain-source voltage of the input transistors. The common-mode input signal range includes the negative rail. This is obtained by controlling the bulk bias of the input and cascoding transistors. The amplifier consists of two gain stages connected via cascoded current mirrors. The gain is improved by using gain boost in the current mirrors, and by the suppression of impact ionization current in the output stage  相似文献   

11.
This paper describes the design of a 14-b 75-Msample/s pipeline analog-to-digital converter (ADC) implemented in a 0.35-μm double-poly triple-metal CMOS process. The ADC uses a 4-b first stage to relax capacitor-matching requirements, buffered bootstrapping to reduce signal-dependent charge injection, and a flip-around track-and-hold amplifier with wide common-mode compliance to reduce noise and power consumption. It achieves 14-b accuracy without calibration or dithering. Typical differential nonlinearity is 0.6 LSB, and integral nonlinearity is 2 LSB. The ADC also achieves 73-dB signal-to-noise ratio, and 85-dB spurious-free dynamic range over the first Nyquist band. The 7.8-mm2 ADC operates with a 2.7- to 3.6-V supply, and dissipates 340 mW at 3 V  相似文献   

12.
This paper describes a 14-bit 80-MSPS ADC with 100-dB SFDR at 70-MHz input frequency in a 0.35-$muhbox m$single-well BiCMOS technology drawing 1.2 W from a dual 3.3 V/5.0 V supply. Key barriers to high dynamic range in pipeline ADCs at high clock rates and some methods to overcome these barriers will be presented. These methods include a sampling front-end without the use of a designated Sample and Hold (S/H). A BiCMOS switching input buffer is used along with the strategic use of BiCMOS design techniques. Also, calibration is combined with capacitor shuffling to maximize linearity with minimal noise impact.  相似文献   

13.
A circuit technique for integrating built-in complex finite-impulse-response (FIR) and infinite-impulse-response (IIR) filtering functions into operation of a subsampler is presented. Based on integrative multiple sampling in the charge domain, the complex FIR filtering function of the sampler provides internal anti-aliasing and image band suppression prior to quadrature downconversion by subsampling. The complex IIR filtering function, taking place at the output sampling rate of the sampler, performs further first-order channel selection filtering on the downconverted signal. An example 50-MHz IF-sampler implementation in 0.8-/spl mu/m BiCMOS demonstrating the feasibility of the technique is presented in the paper.  相似文献   

14.
An ultra-low-voltage CMOS two-stage algorithm ADC featuring high SFDR and efficient background calibration is presented. The adopted low-voltage circuit technique achieves high-accuracy high-speed clocking without the use of clock boosting or bootstrapping. A resistor-based input sampling branch demonstrates high linearity and inherent low-voltage operation. The proposed background calibration accounts for capacitor mismatches and finite opamp gain error in the MDAC stages via a novel digital correlation scheme involving a two-channel ADC architecture. The prototype ADC, fabricated in a 0.18 /spl mu/m CMOS process, achieves 77-dB SFDR at 0.9 V and 5MSPS (30 MHz clocking) after calibration. The measured SNR, SNDR, DNL, and INL at 80 kHz input are 50 dB, 50 dB, 0.6 LSB, and 1.4 LSB, respectively. The total power consumption is 12 mW, and the active die area is 1.4 mm/sup 2/.  相似文献   

15.
介绍了一种10位100 MS/s流水线A/D转换器的设计方法,采用增益提升技术,实现了增益为100 dB和单位增益带宽为1.2 GHz的高性能跨导运算放大器.改进了系统的延时单元,能够准确地锁存输出信号,减少噪声的影响.仿真结果表明,整个系统的有效位数提高了0.5位.整个系统基于TSMC 0.18 μm CMOS工艺进行仿真,结果表明,整个电路的各个工艺角在温度为-20℃~85℃下均能满足100 MHZ采样率流水线A/D转换器的要求.  相似文献   

16.
A 12-b analog-to-digital converter (ADC) is optimized for spurious-free dynamic range (SFDR) performance at low supply voltage and suitable for use in modern wireless base stations. The 6-7-b two-stage pipeline ADC uses a bootstrap circuit to linearize the sampling switch of an on-chip sample-and-hold (S/H) and achieves over 80-dB SFDR for signal frequencies up to 75 MHz at 50 MSample/s (MSPS) without trimming, calibration, or dithering. INL is 1.3 LSB, differential nonlinearity (DNL) is 0.8 LSB. The 6-b and 7-b flash sub-ADCs are implemented efficiently using offset averaging and analog folding. In 0.6-μm CMOS, the 16-mm2 ADC dissipates 850 mW  相似文献   

17.
A 200 MHz quadrature direct digital frequency synthesizer/complex mixer (QDDFSM) chip is presented. The chip synthesizes 12 b sine and cosine waveforms with a spectral purity of -84.3 dBc. The frequency resolution is 0.047 Hz with a corresponding switching speed of 5 ns and a tuning latency of 14 clock cycles. The chip is also capable of frequency, phase, and quadrature amplitude modulation. These modulation capabilities operate up to the maximum clocking frequency. The chip provides the capability of parallel operation of multiple chips with throughputs up to 800 MHz. The 0.8 μm triple level metal N-well CMOS chip has a complexity of 52000 transistors with a core area of 2.6×6.1 mm2. Power dissipation is 2 W at 200 MHz and 5 V  相似文献   

18.
This paper describes a 10 or 12 bit programmable successive approximation register ADC for bridge stress monitoring systems requiring high-resolution, high linearity, low power and small size. Its sampling rate is scalable, from 0 to 200 kS/s. The proposed ADC employs a novel time-domain comparator with offset cancellation. Prototyped in a 0.18-μm, 6MIP CMOS process, the ADC, at 12 bit, 100 kS/s, achieves a Nyquist SNDR of 68.74 dB (11.13), an SFDR of 90.36 dB, while dissipating 579.6 μW from a 1.8-V supply. The on-chip calibration improves the DNL from +0.2/?0.74 LSB to +0.23/?0.25 LSB and INL from +1.27/?0.97 LSB to +0.41/?0.4 LSB.  相似文献   

19.
A 3-pole Chebyshev bandpass filter, that employs on-chip passive elements with Q-enhancement technique, achieves an insertion loss of 0 dB and a passband of 60 MHz around a center frequency of 2140 MHz. The Q-enhancement technique is based on coupled-inductor negative resistance generator. In contrast to conventional negative resistance generator, this technique compensates resonator loss without introducing distortion in the filter response in the passband. Fabricated in a 0.25-μm CMOS, the filter consumes 7 mA from a 2.5-V supply. The filter occupies an area of 1.3 mm×2.7 mm  相似文献   

20.
A 5.2-GHz CMOS receiver employs a double downconversion heterodyne architecture with a local oscillator frequency of 2.6 GHz and applies offset cancellation to the baseband amplifiers. Placing the image around the zero frequency, the receiver achieves an image rejection of 62 dB with no external components while minimizing the flicker noise upconversion in the first mixing operation. Realized in a 0.25-μm digital CMOS technology, the circuit exhibits a noise figure of 6.4 dB, an IP3 of -15 dBm, and a voltage conversion gain of 43 dB, while draining 29 mW from a 2.5-V supply  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号