首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching. All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.   相似文献   

2.
Many practical systems can be modelled as switched systems, whose stability problem is challenging even for linear subsystems. In this article, the stability problem of second-order switched linear systems with a finite number of subsystems under arbitrary switching is investigated. Sufficient and necessary stability conditions are derived based on the worst-case analysis approach in polar coordinates. The key idea of this article is to partition the whole state space into several regions and reduce the stability analysis of all the subsystems to analysing one or two worst subsystems in each region. This article is an extension of the work for stability analysis of second-order switched linear systems with two subsystems under arbitrary switching.  相似文献   

3.
This paper is concerned with the problems of absolute exponential stability and stabilization for a class of switched nonlinear systems whose system matrices are Metzler. Nonlinearity of the systems is constrained in a sector field, which is bounded by two odd symmetric piecewise linear functions. Multiple Lyapunov functions are introduced to deal with the stability of such nonlinear systems. Compared with some existing results obtained by the common Lyapunov function approach in the literature, the conservatism of our results is reduced. All present conditions can be solved by linear programming. Furthermore, the absolute exponential stabilization for the considered systems is designed by the state-feedback and average dwell time switching strategy. Two examples are also given to illustrate the validity of the theoretical findings.  相似文献   

4.
We consider products of matrix exponentials under the assumption that the matrices span a nilpotent Lie algebra. In 1995, Gurvits conjectured that nilpotency implies that these products are, in some sense, simple. More precisely, there exists a uniform bound l such that any product can be represented as a product of no more than I matrix exponentials. This conjecture has important applications in the analysis of linear switched systems, as it is closely related to the problem of reachability using a uniformly bounded number of switches. It is also closely related to the concept of nice reachability for bilinear control systems. The conjecture is trivially true for the case of first-order nilpotency. Gurvits proved the conjecture for the case of second-order nilpotency using the Baker-Campbell-Hausdorff formula. We show that the conjecture is false for the third-order nilpotent case using an explicit counterexample. Yet, the underlying philosophy behind Gurvits' conjecture is valid in the case of third-order nilpotency. Namely, such systems do satisfy the following nice reachability property: any point in the reachable set can be reached using a piecewise constant control with no more than four switches. We show that even this form of finite reachability is no longer true for the case of fifth-order nilpotency.  相似文献   

5.
This paper applies the concept of superstability to switched linear systems as a particular case of linear time-varying systems. A generalised concept of superstability, applied to complex matrices, and extended superstability, is introduced in order to obtain a new result for guaranteeing the asymptotic stability of a switched system under arbitrary switching. The relation between extended superstable and stable simultaneously triangularizable sets of matrices is also discussed. It is shown that stable triangularizable matrices are a proper subset of extended superstable ones, pointing out that the presented stability result is a generalisation of the previous well-known stability theorems to a broader class of switched dynamical systems.  相似文献   

6.
We present a sufficient condition for asymptotic stability of a switched linear system in terms of the Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable, then the switched system is exponentially stable for arbitrary switching. In fact, we show that any family of linear systems satisfying this condition possesses a quadratic common Lyapunov function. We also discuss the implications of this result for switched nonlinear systems.  相似文献   

7.
In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched Lyapunov function (SLF) method with Finsler’s Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.  相似文献   

8.
In this paper we derive necessary and sufficient conditions for the existence of a common linear co-positive Lyapunov function for a finite set of linear positive systems. Both the state dependent and arbitrary switching cases are considered. Our results reveal an interesting characterisation of “linear” stability for the arbitrary switching case; namely, the existence of such a linear Lyapunov function can be related to the requirement that a number of extreme systems are Metzler and Hurwitz stable. Examples are given to illustrate the implications of our results.  相似文献   

9.
In this note we consider the stability preserving properties of diagonal Padé approximations to the matrix exponential. We show that while diagonal Padé approximations preserve quadratic stability when going from continuous-time to discrete-time, the converse is not true. We discuss the implications of this result for discretizing switched linear systems. We also show that for continuous-time switched systems which are exponentially stable, but not quadratically stable, a Padé approximation may not preserve stability.  相似文献   

10.
The goal of this paper is to study the switched stochastic control problem of discrete-time linear systems with multiplicative noises. We consider both the quadratic and the H criteria for the performance evaluation. Initially we present a sufficient condition based on some Lyapunov–Metzler inequalities to guarantee the stochastic stability of the switching system. Moreover, we derive a sufficient condition for obtaining a Metzler matrix that will satisfy the Lyapunov–Metzler inequalities by directly solving a set of linear matrix inequalities, and not bilinear matrix inequalities as usual in the literature of switched systems. We believe that this result is an interesting contribution on its own. In the sequel we present sufficient conditions, again based on Lyapunov–Metzler inequalities, to obtain the state feedback gains and the switching rule so that the closed loop system is stochastically stable and the quadratic and H performance costs are bounded above by a constant value. These results are illustrated with some numerical examples.  相似文献   

11.
苏瑞  李建华  李彦平 《自动化学报》2007,33(10):1090-1092
超循环---生物学中重要模型, 具有广泛的实际背景. 本文将超循环系统扩展为切换超循环系统. 循环矩阵的循环结构为研究切换超循环系统的稳定性提供了有效的方法, 给出切换线性时变超循环系统在任意切换律下渐近稳定的充要条件和切换线性定常超循环系统可切换镇定的充分条件.  相似文献   

12.
This paper aims at characterizing the most destabilizing switching law for discrete-time switched systems governed by a set of bounded linear operators. The switched system is embedded in a special class of discrete-time bilinear control systems. This allows us to apply the variational approach to the bilinear control system associated with a Mayer-type optimal control problem, and a second-order necessary optimality condition is derived. Optimal equivalence between the bilinear system and the switched system is analyzed, which shows that any optimal control law can be equivalently expressed as a switching law. This specific switching law is most unstable for the switched system, and thus can be used to determine stability under arbitrary switching. Based on the second-order moment of the state, the proposed approach is applied to analyze uniform mean-square stability of discrete-time switched linear stochastic systems. Numerical simulations are presented to verify the usefulness of the theoretic results.  相似文献   

13.
A dynamical system is box invariant if there exists a box-shaped positively invariant region. We show that box invariance can be checked in cubic time for linear and affine systems, and that it remains decidable for classes of nonlinear systems of interest (with polynomial structure). We present results on the robustness of box invariance for linear systems using spectral properties of Metzler matrices. We also present sufficient conditions for establishing box invariance of switched and hybrid systems. In general, we argue that box invariance is a characteristic of many biologically-inspired dynamical models.  相似文献   

14.
A powerful approach for analyzing the stability of continuous-time switched systems is based on using optimal control theory to characterize the “most unstable” switching law. This reduces the problem of determining stability under arbitrary switching to analyzing stability for the specific “most unstable” switching law. For discrete-time switched systems, the variational approach received considerably less attention. This approach is based on using a first-order necessary optimality condition in the form of a maximum principle (MP), and typically this is not enough to completely characterize the “most unstable” switching law. In this paper, we provide a simple and self-contained derivation of a second-order necessary optimality condition for discrete-time bilinear control systems. This provides new information that cannot be derived using the first-order MP. We demonstrate several applications of this second-order MP to the stability analysis of discrete-time linear switched systems.  相似文献   

15.
This paper addresses two strategies for stabilization of discrete time linear switched systems. The first one is of open loop nature (trajectory independent) and is based on the determination of an upper bound of the minimum dwell time by means of a family of quadratic Lyapunov functions. The relevant point on dwell time calculation is that the proposed stability condition does not require the Lyapunov function be uniformly decreasing at every switching time. The second one is of closed loop nature (trajectory dependent) and is designed from the solution of what we call Lyapunov–Metzler inequalities from which the stability condition is expressed. Being non-convex, a more conservative but simpler to solve version of the Lyapunov–Metzler inequalities is provided. The theoretical results are illustrated by means of examples.  相似文献   

16.
In this paper, we study the synchronization problem for complex dynamical networks with switching topology from a switched system point of view. The synchronization problem is transformed into the stability problem for time-varying switched systems. We address two basic problems: synchronization under arbitrary switching topology, and synchronization via design of switching within a pre-given collection of topologies when synchronization cannot be achieved by using any topology alone in this collection. For the both problems, we first establish synchronization criteria for general connection topology. Then, under the condition of simultaneous triangularization of the connection matrices, a common Lyapunov function (for the first problem) and a single Lyapunov and multiple Lyapunov functions (for the second problem) are systematically constructed respectively by those of several lower-dimensional dynamic systems. In order to achieve synchronization using multiple Lyapunov functions, a stability condition and switching law design method for time-varying switched systems are also presented, which avoid the usual non-increasing condition.  相似文献   

17.
The present communication is concerned with uniform exponential stability, under arbitrary switching, in discrete-time switched positive linear systems. Lagrange duality is used in order to obtain a new characterisation for uniform exponential stability which is in terms of sets of inequalities involving each of the matrices that represent the modes of the system. These sets of inequalities are shown to generalise the classical linear Lyapunov inequality that characterises, in positive matrices, the property of being Schur. Each solution to these sets of inequalities is shown to provide a representation, in terms of a number of linear functionals, for a common Lyapunov function for the switched positive linear system. A result is further presented which conveys to, a conservative upper bound on the minimum required number of linear functionals (in the above mentioned representation), and also to a method for computing them. Our proof for the aforementioned characterisation is based on another (equivalent) characterisation, in terms of the solvability of a dynamic programming equation associated to the switched positive linear system, which is also reported in the paper. In particular, it is shown that the associated dynamic programming equation has at most one solution. And this solution is shown to be convex, monotonic, positively homogeneous, and it yields a common Lyapunov function for the switched positive linear system.  相似文献   

18.
《Automatica》2014,50(11):2872-2879
In this paper we give necessary and sufficient conditions for weak and strong quadratic stability of a class of switched linear systems consisting of two subsystems, associated with symmetric transfer function matrices. These conditions can simply be tested by checking the eigenvalues of the product of two subsystem matrices. This result is an extension of the result by Shorten and Narendra for strong quadratic stability, and the result by Shorten et al. on weak quadratic stability for switched linear systems. Examples are given to illustrate the usefulness of our results.  相似文献   

19.
We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices of the switched linear system into a convenient form satisfying certain properties. The method provides ultimate bounds and invariant sets in the form of polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the aforementioned transformation is obtained, and provides a new sufficient condition for practical stability. We show that the transformation required by our method can easily be found in the well-known case where the subsystem matrices generate a solvable Lie algebra, and we provide an algorithm to seek such transformation in the general case. An example comparing the bounds obtained by the proposed method with those obtained from a common quadratic Lyapunov function computed via linear matrix inequalities shows a clear advantage of the proposed method in some cases.  相似文献   

20.
Yuangong Sun  Long Wang 《Automatica》2013,49(1):305-307
This note is focused on the stability analysis for a class of switched nonlinear systems with disturbance input and delay. Sufficient conditions in terms of linear inequalities are presented such that the switched system is asymptotically stable for arbitrary switching, any admissible sector nonlinearities and disturbances, and any constant delay. We not only drop a condition of one result given in Aleksandrov, Chen, Platonov, and Zhang (2011), but also extend the main result to a more general switched nonlinear system with disturbance input and delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号