首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Given significant mobility advantages, UAVs have access to many locations that would be impossible for an unmanned ground vehicle to reach, but UAV research has historically focused on avoiding interactions with the environment. Recent advances in UAV size to payload and manipulator weight to payload ratios suggest the possibility of integration in the near future, opening the door to UAVs that can interact with their environment by manipulating objects. Therefore, we seek to investigate and develop the tools that will be necessary to perform manipulation tasks when this becomes a reality. We present our progress and results toward a design and physical system to emulate mobile manipulation by an unmanned aerial vehicle with dexterous arms and end effectors. To emulate the UAV, we utilize a six degree-of-freedom miniature gantry crane that provides the complete range of motion of a rotorcraft as well as ground truth information without the risk associated with free flight. Two four degree-of-freedom manipulators attached to the gantry system perform grasping tasks. Computer vision techniques and force feedback servoing provide target object and manipulator position feedback to the control hardware. To test and simulate our system, we leverage the OpenRAVE virtual environment and ROS software architecture. Because rotorcraft are inherently unstable, introduce ground effects, and experience changing flight dynamics under external loads, we seek to address the difficult task of maintaining a stable UAV platform while interacting with objects using multiple, dexterous arms. As a first step toward that goal, this paper describes the design of a system to emulate a flying, dexterous mobile manipulator.  相似文献   

2.
Compared to autonomous ground vehicles, UAVs (unmanned aerial vehicles) have significant mobility advantages and the potential to operate in otherwise unreachable locations. Micro UAVs still suffer from one major drawback: they do not have the necessary payload capabilities to support high performance arms. This paper, however, investigates the key challenges in controlling a mobile manipulating UAV using a commercially available aircraft and a light-weight prototype 3-arm manipulator. Because of the overall instability of rotorcraft, we use a motion capture system to build an efficient autopilot. Our results indicate that we can accurately model and control our prototype system given significant disturbances when both moving the manipulators and interacting with the ground.  相似文献   

3.
无人机设备能够适应复杂地形,但由于电池容量等原因,无人机无法长时间执行任务。无人机与其他无人系统(无人车、无人船等)协同能够有效提升无人机的工作时间,完成既定任务,当无人机完成任务后,将无人机迅速稳定地降落至移动平台上是一项必要且具有挑战性的工作。针对降落问题,文中提出了基于矫正纠偏COACH(corrective advice communicated humans)方法的深度强化学习比例积分微分(proportional-integral-derivative, PID)方法,为无人机降落至移动平台提供了最优路径。首先在仿真环境中使用矫正纠偏框架对强化学习模型进行训练,然后在仿真环境和真实环境中,使用训练后的模型输出控制参数,最后利用输出参数获得无人机位置控制量。仿真结果和真实无人机实验表明,基于矫正纠偏COACH方法的深度强化学习PID方法优于传统控制方法,且能稳定完成在移动平台上的降落任务。  相似文献   

4.
This paper treats the design of a decentralized nonlinear robust control system for formation flying of multiple unmanned aerial vehicles (UAVs). In close formation, it is assumed that vortex of any UAV affects the motion of all the UAVs behind it. The forces produced by these vortices are complex functions of relative position co‐ordinates of the UAVs. In this paper, these forces are treated as unknown functions, which cannot be parameterized. Since the system is not invertible in the wind axes system, a simplified co‐ordinate system obtained from the wind axes system for which the velocity roll (bank angle) is zero, is considered for the design of the control system. A nonlinear robust control system for the separation trajectory control of the wing aircraft in the simplified wind coordinate system is derived. Uncertain functions and unmeasured variables are estimated using a high‐gain observer for the synthesis of the control system. Each wing UAV synthesizes its control law using its own state variables and the relative position of the preceding UAV with respect to the wing UAV. Thus the control system is decentralized since each UAV has to communicate (depending on sensors for position measurement) with at most one (preceding) UAV, and no data transmission from the remaining vehicles is required. Simulation results for two UAVs are presented which show precise separation trajectory control of each wing UAV in spite of the presence of unknown and unstructured vortex forces, while the lead aircraft maneuvers. Furthermore, these results confirm that when the wing aircraft is positioned properly in the vortex of the lead aircraft, it experiences reduction in its required flight power. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A hardware-in-the-loop test rig is presented to bridge the gap between basic aerial manipulation research and the ability of flying robots to perform tasks such as bridge repair, agriculture care, container inspection and other applications requiring interaction with the environment. Unmanned aerial vehicles have speed and mobility advantages over ground vehicles and can operate in 3-dimensional workspaces. In particular, the usefulness of these capabilities is highlighted in areas where ground robots cannot reach or terrains they are unable to navigate. However, most UAVs operating in near-earth or indoor environments still do not have the payload capabilities to support multi-degree of freedom manipulators. We present a rotorcraft emulation environment using a 7 degree of freedom manipulator. Since UAVs require significant setup time and to avoid potential crashes, our test and evaluation environment provides repeatable experiments and captures reactionary forces experienced during ground interaction. Recent experiments in insertion tests are presented. The lessons learned from these experiments will be ported onto an actual air vehicle with manipulator.  相似文献   

6.
This paper treats the question of formationflight control of multiple unmanned aerial vehicles (UAVs). Inclose formation the wing UAV motion is affected by the vortexof the adjacent lead aircraft. The forces produced by these vorticesare complex functions of the relative position coordinates ofthe UAVs. In this paper, these forces are treated as unknownfunctions. For simplicity, it is assumed that the UAVs have autopilotsfor heading-, altitude-, and Mach-hold in the inner loops. Anadaptive control law is derived for the position control of thewing aircraft based on a backstepping design technique. In theclosed-loop system, commanded separation trajectories are asymptoticallytracked by each wing aircraft while the lead UAV is maneuvering.It is seen that an overparametrization in the design is essentialfor the decentralization of the control system. These resultsare applied to formation flight control of two UAVs and simulationresults are obtained. These results show that the wing UAV followsprecisely the reference separation trajectories in spite of theuncertainties in the aerodynamic coefficients, while the leadaircraft maneuvers.  相似文献   

7.
At the last two decades, according to UAVs concepts and technological advances, there have been lots of unimagined improvements. Nowadays there are serious works and researches about the usage of UAVs in military operations at electronic warfare (EW) missions. But most of the work on UAV platforms is based upon the advantages of a single, big, expensive, and non-expendable platform. In this study, to get rid off the disadvantages of a stand alone platform a new concept is developed consisting of multiple UAVs with smaller dimensions, at a cheaper price and a wider coverage. According to clarify the study, firstly the EW and RADAR systems and then the swarm UAV concepts are explained. In this manner the current and previous works are pointed out and then the use of the swarm UAVs for EA in military operations is stated. Objectively, the swarm UAV concept’s advantages and some outstanding challenges to the intra-theater space have been put forward regarding the information mentioned above. As a result it is considered that the swarm UAV systems will be tasked important EW missions in the future operation theatres, as soon as the technical handicaps are solved.  相似文献   

8.
Miniature unmanned aerial vehicles (UAVs) have attracted wide interest from researchers and developers because of their broad applications. In order to make a miniature UAV platform popular for civilian applications, one critical concern is the overall cost. However, lower cost generally means lower navigational accuracy and insufficient flight control performance, mainly due to the low graded avionics on the UAV. This paper introduces a data fusion system based on several low-priced sensors to improve the attitude estimation of a low-cost miniature fixed-wing UAV platform. The characteristics of each sensor and the calculation of attitude angles are carefully studied. The algorithms and implementation of the fusion system are described and explained in details. Ground test results with three sensor fusions are compared and analyzed, and flight test comparison results with two sensor fusions are also presented.  相似文献   

9.
Unmanned aerial vehicles (UAVs) are highly focused and widely used in various domains, and the capability of autonomous aerial refueling (AAR) becomes increasingly important. Most of the research in this area concerns the verification of the algorithms while the experiments are conducted on the ground. In this work, in order to verify the vision system designed for boom approach AAR, an integrated platform is built and tested. The platform consists of a tanker UAV, a receiver UAV and a ground station. The pictures of the marker on the receiver UAV are captured by the binocular vision system on the tanker UAV and then used for flight control and boom control. Performance and feasibility of the platform are demonstrated by the real out-door flight tests, and the experimental results verified the feasibility and effectiveness of our developed binocular vision-based UAVs AAR.  相似文献   

10.
This article presents a novel recovery method for fixed‐wing unmanned aerial vehicles (UAVs), aimed at enabling operations from marine vessels. Instead of using the conventional method of using a fixed net on the ship deck, we propose to suspend a net under two cooperative multirotor UAVs. While keeping their relative formation, the multirotor UAVs are able to intercept the incoming fixed‐wing UAV along a virtual runway over the sea and transport it back to the ship. In addition to discussing the concept and design a control system, this paper also presents experimental validation of the proposed concept for a small‐scale UAV platform.  相似文献   

11.
For a while, Unmanned Arial Vehicles (UAVs) use was limited to military applications, however recently UAVs are also used for a wide range of civilian applications. Some of these UAV applications may involve multiple UAVs that must cooperate to achieve a common goal. This kind of applications is termed collaborative UAV applications. This paper investigates the collaborative aspects and challenges of multiple UAV systems. One of the main issues for multiple UAV systems is developing an effective framework to enable the development of software systems for collaborative UAV operations. One possible approach is to rely on service-oriented computing and service-oriented middleware technologies to simplify the development and operations of such applications. This paper discusses how the service-oriented middleware approach can help resolve some of the challenges of developing collaborative UAVs. The paper also proposes a service-oriented middleware architecture that can satisfy the development and operations of such applications.  相似文献   

12.
In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulator’s end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot manipulator. Moreover, the controller has robustness against the bounded force sensor inaccuracies and bounded unstructured modeling (nonparametric) uncertainties and/or disturbances in the system. Tracking performance and stability of the system are proved via Lyapunov stability theorem. Using simulations on a quadrotor UAV equipped with a three-DOF robot manipulator, the effectiveness of the proposed robust adaptive impedance controller is investigated in the presence of the force sensor error, and parametric and non-parametric uncertainties.  相似文献   

13.
In this paper we study a symbiotic aerial vehicle-ground vehicle robotic team where unmanned aerial vehicles (UAVs) are used for aerial manipulation tasks, while unmanned ground vehicles (UGVs) aid and assist them. UGV can provide a UAV with a safe landing area and transport it across large distances, while UAV can provide an additional degree of freedom for the UGV, enabling it to negotiate obstacles. We propose an overall system control framework that includes high-accuracy motion planning for each individual robot and ad-hoc decentralized mission planning for complex missions. Experimental results obtained in a mockup arena for parcel transportation scenario show that the system is able to plan and execute missions in various environments and that the obtained plans result in lower energy consumption.  相似文献   

14.
UAV accidents have been steadily rising as demand and use of these vehicles increases. A critical examination of UAV accidents reveals that human error is a major cause. Advanced autonomous systems capable of eliminating the need for human piloting are still many years from implementation. There are also many potential applications of UAVs in near Earth environments that would require a human pilot’s awareness and ability to adapt. This suggests a need to improve the remote piloting of UAVs. This paper explores the use of motion platforms to augment pilot performance and the use of a simulator system to asses UAV pilot skill. The approach follows studies on human factors performance and cognitive loading. The resulting design serves as a test bed to study UAV pilot performance, create training programs, and ultimately a platform to decrease UAV accidents.  相似文献   

15.
Airborne vehicle detection and tracking systems equipped on unmanned aerial vehicles (UAVs) are receiving more and more attention due to their advantages of high mobility, fast deployment and large surveillance scope. However, such systems are difficult to develop because of factors like UAV motion, scene complexity, and especially the partial occlusion of targets. To address these problems, a new framework of multi-motion layer analysis is proposed to detect and track moving vehicles in airborne platform. After motion layers are constructed, they are maintained over time for tracking vehicles. Most importantly, since the vehicle motion layers can be maintained even when the vehicles are only partially observed, the proposed method is robust to partial occlusion. Our experimental results showed that (1) compared with other previous algorithms, our method can achieve better performance in terms of higher detection rate and lower false positive rate; (2) it is more efficient and more robust to partial occlusion; (3) it is able to meet the demand of real time application due to its computational simplicity.  相似文献   

16.
The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs.  相似文献   

17.
Unmanned Aerial Vehicles (UAVs) are gaining increasing interest thanks to their flexibility and versatility. However, these systems are very complex and a good simulation platform is needed. In this paper, a new Framework for simulation and fast prototyping of UAV control laws is presented. The Framework exploits the high realism of the simulations carried out in a three-dimensional virtual environment with the easiness of use of development systems such as Matlab? for fast prototyping of control systems. Then a novel method that exploits the benefits of Model Predictive Control (MPC) for cooperative scenarios is introduced. The obtained results show good performances of MPC in solving the formation problem of unmanned aerial vehicles; finding an optimal solution and taking into account different constraints. The developed framework allows also to easily change from simulated agent to real?one.  相似文献   

18.
Civilian applications for UAVs will bring these vehicles into low flying areas cluttered with obstacles such as building, trees, power lines, and more importantly civilians. The high accident rate of UAVs means that civilian use will come at a huge risk unless we design systems and protocols that can prevent UAV accidents, better train operators and augment pilot performance. This paper presents two methods for generating a chase view to the pilot for UAV operations in cluttered environments. The chase view gives the operator a virtual view from behind the UAV during flight. This is done by generating a virtual representation of the vehicle and surrounding environment while integrating it with the real-time onboard camera images. Method I presents a real-time mapping approach toward generating the surrounding environment and Method II uses a prior model of the operating environment. Experimental results are presented from tests where subjects flew in a H0 scale environment using a 6 DOF gantry system. Results showed that the chase view improved UAV operator performance over using the traditional onboard camera view.  相似文献   

19.
In this paper, a dynamic model of vertical take-off and landing (VTOL) aerial vehicles, having lateral and longitudinal rotor tilting mechanism, is first developed using a Newton–Euler formulation. Then an integral backstepping (IB) control technique is proposed to improve the pitch, yaw, and roll stability of the vehicle. Such control mechanisms enables the UAV to perform complex tasks that no other Unmanned Aerial Vehicles (UAVs) can execute such as hover pitched. This control tactic allows the vehicle under investigation, eVader, to use the full potential of its flying characteristics enabled by the novel dual-axis oblique active tilting (OAT) mechanism, which enables it to maneuver inside obstructed environments. The potential of the eVader as a small UAV and its model are verified and then used to for autonomous take-off and landing as well as stabilizing the vehicle’s attitude. Finally, diverse simulation scenarios on attitude and position control, stabilization and autonomous take off and landing are presented.  相似文献   

20.
UAVs surpassing satellites and aircraft in remote sensing over China   总被引:1,自引:0,他引:1  
ABSTRACT

Many users are now showing strong interest in UAV RS (Unmanned Aerial Vehicle Remote Sensing) due to its easy accessibility. UAVs have become popular platforms for remote sensing data acquisition. In a number of practical and time constrained circumstances, UAV RS data have been widely used as a substitute for traditional satellite remote sensing data. However, airspace-related regulations are far behind the rapid growth in the number of UAVs and their wide applications. Much effort of the network-based UAV RS have been made by the UAV RS group of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (IGSNRR, CAS), which proposed the concept of UAV RS data carrier. UAV RS data carrier refers to UAV RS data platform with task planning, data storage, image processing, product generation and output products for various UAVs. An ongoing effort to create a nationwide UAV RS network in addition to an existing ground observational network is being carried out in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号