首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张岱峰  罗彪  梅亮 《测控技术》2015,34(12):62-65
针对四旋翼无人机强耦合、非线性的控制难点,研究设计了一种基于自抗扰控制和比例微分控制的双闭环控制器。首先,分析了小型四旋翼飞行器动力学模型,确定四旋翼无人机的六自由度方程。然后,利用自抗扰控制技术对强耦合、非线性的姿态模型进行了解耦,设计扩张状态观测器对其总扰动进行观测与补偿。其次,设计比例微分控制器对解耦后的系统进行位置跟踪,从而与姿态控制器组成双闭环系统。最后,通过仿真及试飞实验测试系统性能。仿真和试飞结果表明该系统能够完成对控制指令的实时跟踪,并且对干扰具有极强的抑制力。  相似文献   

2.
In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulator’s end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot manipulator. Moreover, the controller has robustness against the bounded force sensor inaccuracies and bounded unstructured modeling (nonparametric) uncertainties and/or disturbances in the system. Tracking performance and stability of the system are proved via Lyapunov stability theorem. Using simulations on a quadrotor UAV equipped with a three-DOF robot manipulator, the effectiveness of the proposed robust adaptive impedance controller is investigated in the presence of the force sensor error, and parametric and non-parametric uncertainties.  相似文献   

3.
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.  相似文献   

4.
In this paper, a tracking controller is formulated for a quadrotor to track a moving ground target. The quadrotor exhibits distinct hierarchical dynamics that allows its position to be controlled by its attitude. This motivates the use of backstepping control on the underactuated quadrotor. Most backstepping architecture controls the quadrotor position and attitude independently, and couples them with inverse kinematics. Inverse kinematics computes the attitude angles required to achieve a desired acceleration. However unmodeled effects are shown to cause inexact inversion resulting in tracking error. The approach proposed in this paper uses a re-formulated full state cascaded dynamics to eliminate the need for inverse kinematics in a full state backstepping control architecture. It is shown that zero steady state error is achieved in the presence of unmodeled aerodynamics effect and wind disturbance despite no integral action. In addition, a backstepping formulation is derived using contraction theory that guarantees the boundedness of state response under bounded disturbances such as wind. This improves the system performance. Numerical simulations are performed using the proposed controller to track a target moving along predefined paths and the results are compared with a benchmark controller derived using inverse kinematics. The results show that the proposed controller is able to achieve better tracking performance under unmodeled aerodynamic effects and wind disturbance as compared with the benchmark controller.  相似文献   

5.
郭宪  马书根  李斌  王明辉  王越超 《自动化学报》2015,41(11):1847-1856
对带有被动轮的蛇形机器人进行速度跟踪控制时,利用传统的动力学建模方法得到的动力学方程复杂且不利于控制器的设计. 本文基于微分几何的方法将带有被动轮的蛇形机器人动力学投影到速度分布空间中, 得到了动力学与控制统一模型, 更有利于速度跟踪控制器的设计. 考虑到蛇形机器人在进行速度跟踪时容易出现奇异位形, 提出增加头部扰动速度的方法. 基于头部扰动速度和统一模型, 提出避免奇异位形的速度跟踪控制方法, 最后通过逆向动力学得到控制力矩. 文中对速度跟踪控制进行了数值仿真和实验验证. 仿真和实验结果表明, 提出的速度跟踪控制方法能够跟踪想要方向的速度, 并且在跟踪过程中可以有效地避免奇异位形.  相似文献   

6.
In this paper an adaptive control scheme along with its simulation, and its implementation on a quadrotor are presented. Parametric and non- parametric uncertainties in the quadrotor model make it difficult to design a controller that works properly in various conditions during flight time. Decentralized adaptive controller, which is synthesized based on improved Lyapunov-based Model Reference Adaptive Control (MRAC) technique, is suggested to solve the problem. The proposed control scheme does not need knowing the value of any physical parameter for generating appropriate control signals, and retuning the controller is not required for different payloads. An accurate simulation that includes empirical dynamic model of battery, sensors, and actuators is performed to validate the stability of the closed loop system. The simulation study simplifies implementation of the controller on our real quadrotor. A practical algorithm is proposed to alleviate and accelerate the tuning of controller parameters. The controller is implemented on the quadrotor to stabilize its attitude and altitude. Simulation and experimental results demonstrate the efficiency and robustness of the proposed controller.  相似文献   

7.
A nonlinear control algorithm for tracking dynamic trajectories using an aerial vehicle is developed in this work. The control structure is designed using a sliding mode methodology, which contains integral sliding properties. The stability analysis of the closed‐loop system is proved using the Lyapunov formalism, ensuring convergence in a desired finite time and robustness toward unknown and external perturbations from the first time instant, even for high frequency disturbances. In addition, a dynamic trajectory is constructed with the translational dynamics of an aerial robot for autonomous take‐off, surveillance missions, and landing. This trajectory respects the constraints imposed by the vehicle characteristics, allowing free initial trajectory conditions. Simulation results demonstrate the good performance of the controller in closed‐loop system when a quadrotor follows the designed trajectory. In addition, flight tests are developed to validate the trajectory and the controller behavior in real time.  相似文献   

8.
We proposed a multi-propeller multifunction aerial robot that is constructed by a quadrotor with two multi-DOF arms to enable aerial robotic operations. This paper addresses the dynamics and control problems for aerial arm-operation. The dynamic modeling considering the coupling between the arms and main-body subsystems is investigated using the Lagrange approach. The dynamics of the system are partitioned into the main-body dynamics, the arm dynamics, and the interaction dynamics. A composite controller consisting of a main-body sub-controller and an arm sub-controller are presented. Each sub-controller is designed based on the partitioned dynamics. The main-body sub-controller is designed using trajectory linearization control technique. This composite controller is appropriate for real-time implementation due to its simplicity. An optimal planning strategy that minimizes the interaction between main-body subsystem and arm subsystem is proposed. Experimental results are presented, verifying the effectiveness of the composite controller.  相似文献   

9.
This work proposes a hierarchical nonlinear control scheme for quadrotor to track 3D trajectory subject to payload variation and fast time-varying wind gust disturbance. In terms of dynamics model, the 6 DOF dynamics model with parametric and nonparametric uncertainties is built up. Wind gust and propeller momentum drag model are implemented to quantify the wind impact (force and moment disturbances) on quadrotor. In terms of control design, adaptive robust controller is developed for dynamic subsystem to deal with moment disturbance and estimate the system parameters. Global sliding mode controller is implemented for kinematic subsystem to generate adequate desired attitude angles for tracking the planned 3D trajectory. Simulations and experiments under various conditions are carried out for verification, and the results indicate the effectiveness, adaptiveness and robustness of the control strategy.  相似文献   

10.
多旋翼飞行机器人具有良好的飞行稳定性,受到了越来越多的关注.而在某些特殊应用中,如:从较大飞行器上实施空投、瞬态失稳恢复等,往往需要多旋翼飞行机器人从一个高度不稳定的非零初始状态安全、快速地切换到稳定飞行模态,这就是所谓的大范围镇定控制问题.解决该问题面临的主要困难是如何在调节过程中避免飞行机器人进入到输入饱和区,从而引起周期旋转运动,导致系统完全失控.本文针对该问题,以四旋翼飞行机器人为例,详细分析了控制输入约束形式,并对6自由度模型进行了适当简化,构建了二维平面下考虑控制输入约束的非线性动力学模型;在此基础上,基于控制Lyapunov函数概念,提出了一种改进的广义逐点最小范数控制策略,构建了输入约束下的四旋翼飞行机器人大范围镇定控制器.该方法具有明确的解析控制结构,所设计的控制器满足四旋翼飞行机器人的全部控制输入约束.仿真结果表明,对比常规的线性化控制策略,该方法能在考虑控制约束的前提下避免控制器失效,实现四旋翼飞行机器人的大范围渐进稳定.  相似文献   

11.
A class of voltage-driven robot manipulators is addressed in this paper. Such a class includes those manipulators actuated by direct current (DC) motors with servo-amplifiers in current mode. For those robots, it is assumed that the control inputs to the manipulator are the servo-amplifier input voltages, instead of the applied torques. And even though it is common to consider that the applied torque in each joint is proportional to the servo-amplifier input voltage, in this paper it is assumed that the voltage-to-torque conversion constant is unknown. Notwithstanding, the robot model parameters may still be computed using standard identification methods. An important fact of the class of robots considered in the present study is that the robot dynamics is not passive from the servo-amplifier input voltage to the joint velocity. The paper shows how this drawback can be overcome by using a model-based trajectory tracking controller, which makes the closed-loop system passive from an auxiliary control input to a filtered error signal. To confirm the theoretical conclusions, real-time experiments are carried out in a two-degree-of-freedom direct-drive manipulator. Two known control strategies are compared with respect to the proposed controller. The success of the implementations is based on real-time computing, which ensures that the access to I/O ports and the computation of the control algorithms meet timing requirements accurately.  相似文献   

12.
This article presents a new planar translational cable-direct-driven robot (CDDR) with actuation redundancy and supported against loading normal to the motion plane with a passive planar two-degree-of-freedom SCARA-type (Selective Compliance Assembly Robot Arm) serial manipulator. This allows the robot to resist cable sag without being supported on the motion plane. The proposed robot architecture may assure high payload-to-weight ratio, resistance to forces normal to the plane of motion, and a potentially large workspace. Another benefit is that the passive SCARA has structure to provide end-effector moment resistance, which is not possible with many proposed translational CDDRs. Moreover, the passive robot can also serve as an independent Cartesian metrology system. This article derives the kinematics and dynamics models for the proposed hybrid serial/parallel architecture. Additionally it proposes a dynamic Cartesian controller always ensuring positive cable tensions while minimizing the sum of all the torques exerted by the actuators. Simulation examples are also presented to demonstrate the novel CDDR concept, dynamics, and controller.Category (7) – System Modelling/Simulation/Control/Computer–Aided Design/Robot Control/Teleoperation/Moving Robots  相似文献   

13.
Quadrotor helicopter is an unstable system subject to matched and mismatched disturbances. To stabilize the quadrotor dynamics in the presence of these disturbances, the application of a composite hierarchical anti-disturbance controller, combining a sliding mode controller and a disturbance observer, is presented in this paper. The disturbance observer is used to attenuate the effect of constant and slow time-varying disturbances. Whereas, the sliding mode controller is used to attenuate the effect of fast time-varying disturbances. In addition, sliding mode control attenuates the effect of the disturbance observer estimation errors of the constant and slow time-varying disturbances. In this approach, the upper bounds of the disturbance observer estimation errors are required instead of the disturbances’ upper bounds. The disturbance observer estimation errors are found to be bounded when the disturbance observer dynamics are asymptotically stable and the disturbance derivatives and initial disturbances are bounded. Moreover, due to the highly nonlinear nature of the quadrotor dynamics, the upper bounds of a part of the quadrotor states and disturbance estimates are required. The nonlinear terms in the rotational dynamics are considered as disturbances, part of which is mismatched. This assumption simplifies the control system design by dividing the quadrotor’s model into a position subsystem and a heading subsystem, and designing a controller for each separately. The stability analysis of the closed loop system is carried out using Lyapunov stability arguments. The effectiveness of the developed control scheme is demonstrated in simulations by applying different sources of disturbances such as wind gusts and partial actuator failure.  相似文献   

14.
In this article a switching model predictive attitude controller for an unmanned quadrotor helicopter subject to atmospheric disturbances is presented. The proposed control scheme is computed based on a piecewise affine (PWA) model of the quadrotor's attitude dynamics, where the effects of the atmospheric turbulence are taken into consideration as additive disturbances. The switchings among the PWA models are ruled by the rate of the rotation angles and for each PWA system a corresponding model predictive controller is computed. The suggested algorithm is verified in experimental studies in the execution of sudden maneuvers subject to forcible wind disturbances. The quadrotor rejects the induced wind disturbances while performing accurate attitude tracking.  相似文献   

15.
The dynamics of a quadrotor are a simplified form of helicopter dynamics that exhibit the same basic problems of underactuation, strong coupling, multi-input/multi-output design, and unknown nonlinearities. Control design for the quadrotor is more tractable yet reveals corresponding approaches for helicopter and UAV control design. In this paper, a backstepping approach is used for quadrotor controller design. In contrast to most other approaches, we apply backstepping on the Lagrangian form of the dynamics, not the state space form. This is complicated by the fact that the Lagrangian form for the position dynamics is bilinear in the controls. We confront this problem by using an inverse kinematics solution akin to that used in robotics. In addition, two neural nets are introduced to estimate the aerodynamic components, one for aerodynamic forces and one for aerodynamic moments. The result is a controller of intuitively appealing structure having an outer kinematics loop for position control and an inner dynamics loop for attitude control. The control approach described in this paper is robust since it explicitly deals with unmodeled state-dependent disturbances and forces without needing any prior knowledge of the same. A simulation study validates the results obtained in the paper.  相似文献   

16.
In this paper, a bounded‐input controller is designed for the quadrotor vertical take‐off and landing unmanned aerial vehicle (UAV). Visual information is used to localize the aircraft with respect to its environment and an image‐based visual servo scheme is developed to navigate the motion of it. The visual features are selected from perspective image moments and projected on a rotated image plane, which simplifies the controller design. The flow of the features is used as the linear velocity information, and the controller assumes angular velocity and attitude information available for feedback. To design the controller, the dynamics of the quadrotor are decoupled into two parts: translational dynamics and rotational dynamics. First visual data are used to design a bounded‐input controller for the translational dynamics, and then a saturated controller is designed for the rotational dynamics. The boundedness of the controller increases the chance of keeping the visual features in the field of view of the camera. Furthermore, the controllers also cope with the unknown depth of the image, and the external disturbances. The complete stability analysis of the overall system is presented to show that all states are bounded and the error signals converge to zero asymptotically. Simulation examples are provided in both nominal and perturbed conditions which show the effectiveness of the proposed theoretical results.  相似文献   

17.

为了提高四旋翼无人机SO(3) 控制的动态性能, 对滑模变结构控制在四旋翼无人机SO(3) 姿态控制中的应用进行研究. 首先, 通过对两种四旋翼SO(3) 姿态控制模型进行分析, 确定一种奇异点较少的模型为控制对象; 随后,针对可能出现的控制奇异问题, 设计一种引入调节函数的无奇异积分型滑模面, 得到了滑模稳定性引理; 最后, 利用这种滑模面进行控制器设计和Lyapunov 稳定性分析, 证明了系统全局指数渐近稳定. 仿真结果验证了所提出的设计方案的正确性.

  相似文献   

18.
We propose a new robust trajectory tracking control scheme for wheeled mobile robots without longitudinal velocity measurements. In the proposed controller, a velocity observer is used to estimate the longitudinal velocity of a wheeled mobile robot. A wheeled mobile robot model, including motor dynamics, is used to develop the controller. The developed controller has the following useful properties. (1) The developed controller does not require any accurate knowledge of the robot parameters or the motor parameters. Even if there are uncertainties in the robot dynamics, including the motor properties, it is certain that tracking errors ultimately become uniformly bounded in a closed-loop system using the developed controller. (2) It is shown theoretically that the ultimate norms of tracking errors can easily be reduced by setting only one design parameter.  相似文献   

19.
《Advanced Robotics》2013,27(4):357-381
Fast and energy-efficient control is an increasingly important and attractive area of research in legged locomotion. In this paper, we present a new simple controller for a planar one-legged passive running robot having a springy leg and a compliant hip joint. The most distinctive advantage of the controller over previously proposed ones is it does not require any pre-planned trajectories nor target dynamics. Instead, it utilizes exact non-linear dynamics. Our results are summarized as follows. First, we propose an energy-preserving control strategy for energy-efficient and autonomous gait generation. This strategy is successfully implemented as a new touchdown controller at the flight phase. Simulation results show that the robot can hop from a wide set of initial conditions. Moreover, the running gaits generated are found to be quasi-periodic orbits, which can be seen in Hamiltonian systems. Since the controlled running gaits exist for every admissible energy level, they have some robustness against disturbances. Next, it is shown that an adaptive control of the touchdown angle, which is similar to a delayed feedback controller for a chaotic system, can asymptotically stabilize these quasi-periodic gaits to the periodic ones of the desired period, with some limitations. In particular, for one-periodic gait, by using some additional adaptive controllers, the robot eventually hops without any control inputs. Since our energy-preserving strategy is clear and implementation of the controller is straightforward, we believe it can be easily applied to a wide class of legged mechanisms.  相似文献   

20.
This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号