共查询到16条相似文献,搜索用时 78 毫秒
1.
使用美国NAIP高分辨率航空遥感影像,在多尺度、多变量影像分割的基础上,采用决策树方法建立干旱区半干旱区的荒漠分类规则,并结合水系、道路等辅助地理数据进行干旱区半干旱区面向对象遥感分类.选择位于美国亚利桑那州菲尼克斯大都市区的周边典型荒漠地区为实验区,利用河流、道路等辅助数据进行面向对象遥感分类效果要优于单纯依靠遥感影像的分类,能够有效地提取季节性河流和简易道路.研究对美国亚利桑那州菲尼克斯都市区周边的同一荒漠地区进行了实验,利用决策规则有效提取植被和荒地,以及提取简易道路和土壤,分类总精度从常规面向对象分类方法的82.85%提高到92.45%.研究结果表明:本文提出的分类方法对荒漠地区的泥土路和灌木及其整体分类精度有较大提高.利用辅助数据进行遥感分类可以改善特定研究区的高分辨率遥感影像分类精度. 相似文献
2.
影像分割是面向对象遥感影像分类的基础步骤,而分割尺度又是影像分割的核心问题。研究针对面向对象遥感影像分类中的最优分割尺度选择问题,以分割后影像区域对象矢量边界线与欲分类目标对象真实矢量边界的吻合程度为标准,通过两者多向距离量化吻合程度,提出了一种最优分割尺度定量选择的新方法——矢量距离指数法。通过两种实验,同步验证了该方法的正确性与适用性,实验1将基于矢量距离指数法选择的最优分割尺度结果与较为成熟的人为试错法的选择结果比较,结果表明针对7种地类的矢量距离指数均可以正确反映最优分割尺度;实验2挖掘了矢量距离指数法选择的结果与分类精度的关系,结果表明其中5种地类在矢量距离指数法选择的最优分割尺度上均达到了最大的分类精度,另外2种地类的分类结果最符合实地情况,与欲分类目标最为接近。基于矢量距离指数法基本原理,研究针对分割过程中的“淹没”与“破碎”现象,进一步提出了能够反映两者矛盾程度的尺度指数,该指数能够真实反映针对某种特定地物类型分割尺度的大小状况,为衡量“破碎”与“淹没”的矛盾程度提供了一种定量工具,在分割尺度选择过程中具有重要的指示意义。 相似文献
3.
4.
面向对象高分辨遥感影像分类研究 总被引:1,自引:0,他引:1
高空间分辨率遥感影像采用传统基于像元分类方法精度较低,本文通过分析高分辨遥感影像特征,采用面向对象的最近邻监督分类方法对QuickBird影像进行分类研究,首先对影像进行对象分割,然后将分割对象信息、形状特征与及上下文联系等特征构成特征空间进行最近邻监督分类,并与传统的基于像元最近邻分类方法分类进行比较分析,结果表明,本方法能够较好的识别高分辨率地物类型,总精度为92.19%,Kappa系数为0.8835,较好地改善分类效果,适合高分辨遥感影像分类。 相似文献
5.
基于面向对象信息提取技术的城市用地分类 总被引:10,自引:2,他引:10
针对高分辨率遥感影像的城市用地分类,引入了面向对象的信息提取技术,并将其与传统基于像素光谱信息的分类方法进行了比较。在此基础上详述了面向对象信息提取的关键技术---多尺度影像分割和基于分割的分类技术。以城市作为研究区,实现城市用地的自动分类。图像处理过程包括几何校正、HIS融合、图像分割和图像分类。最终分类结果表明:视觉上,面向对象信息提取技术克服了传统方法无法克服的“椒盐”噪声的影响;精度上,面向对象信息提取技术的总体精度高达84.82%,比最大似然法的总体精度提高了10.95%,并且各类地物信息的提取精度均有所提高,其中草地、道路、建筑物阴影的精度较高。 相似文献
6.
针对高分辨率遥感影像的城市土地覆被信息提取,根据分类目的与精度要求的不同,分别引入了优化与广义两种面向对象分类方案,并对分类的结果进行分析比较。结果表明:①优化方案的分类结果总体上要比广义方案好,前者的总体精度为86.50%,相比后者的80.50%提高了6.0%,而总体Kappa系数提高了0.0851,但是该方案效率低,可移植性差;②广义方案的分类结果虽然精度略低,但是该方案具有很强的适用性与可移植性,能够在精度可控范围内,很大程度提高分类效率,实现系统而有效的自动分类;③广义方案得到的分类结果具有一致的精度,在利用其建立城市生态模型中能够保证数据之间的系统性与鲁棒性。因此,利用优化方案能够提高分类结果的绝对精度,而广义方案对于实时精确获取城市土地覆被信息、小尺度上定量监测与评价城市化的生态后果以及有效开展城市土地规划与管理具有更重要的意义。 相似文献
7.
基于对象级的高分辨率遥感影像分类研究 总被引:7,自引:0,他引:7
依据高分辨率遥感影像的特点,结合深圳市QUICKBIRD数据提出一种基于多尺度分割的对象级遥感分类方法。文中首先利用分形网络演化法(FNEA)进行多尺度图像分割,获取对地表实体更具代表性的图像对象,然后利用对象所包含的光谱、空间特征来确定地物识别中可能要用到的各种特征参数,最后通过构建语义结构实现了研究区地物的逐级分层分类。研究结果表明,本文所采取的方法比传统方法在分类精度上有了明显的提高,为高分辨率遥感影像的信息提取提供了新的技术途径。 相似文献
8.
结合像元形状特征分割的高分辨率影像面向对象分类 总被引:3,自引:0,他引:3
针对高分辨率遥感影像空间分辨率高,结构形状、纹理、细节信息丰富等特点,提出一种新的融合特征的面向对象影像分类方法来提取城市空间信息。基本过程包含以下4个方面:①提取影像的几何纹理等结构;②融合几何与纹理特征的面向对象影像分割;③提取对象的形状、纹理和光谱特征,并优选最佳特征子集;④最后基于支持向量机(SVM)完成面向对象的影像分类。通过对福州IKONOS影像数据实验,结果表明融入影像特征后的分割效果明显优于原始影像的分割结果,而信息最大化(mRMR)的特征选择能够快速地获得较好的特征子集。通过与eCognition最邻近分类方法比较,表明本文方法的分类总体精度大约提高了6%,效果显著。 相似文献
9.
提出了一种新的面向对象的城市绿地信息两阶段提取方法。该方法分阶段使用高分辨率遥感影像的光谱和2维形态信息以及机载LiDAR数据的3维形态信息作为分类依据。第1阶段,影像首先被分割为对象,对象被分类为无阴影的植被、阴影下的植被、水体、建筑物、空地和阴影6类地物;无阴影的植被和阴影下的植被合并为城市绿地对象,在第2阶段,将LiDAR数据产生的归一化数字表面模型nDSM与绿地对象叠加,计算每个对象的3维形态属性,进一步将绿地对象细分为草坪、灌木和乔木。以美国休斯敦中心城区为例,介绍了方法流程。精度分析表明,绿地的分类精度达到9346%;方法中的主要误差来源于遥感影像当中的建筑物阴影以及生成数字地形模型时所产生的误差。 相似文献
10.
11.
采用面向对象遥感影像分类方法对高分辨率遥感影像进行了信息提取实验,并将其与基于像元方法的信息提取结果进行了对比分析。实验研究表明,在目视效果上,传统方法的分类结果图中“椒盐现象”非常明显,而面向对象方法可以有效地避免“椒盐现象”;在分类精度上,面向对象方法分类结果的总体精度、Kappa系数、生产者精度、用户精度、Hellden精度和Short精度均明显高于传统方法,各类地物提取效果显著提高,总分类精度提高21.76%,Kappa系数提高0.2756。面向对象方法在高分辨率遥感影像信息提取中具有明显的优势。 相似文献
12.
13.
遥感技术已经成为实现地表信息提取的主要手段。以高分辨率影像为主要数据源,采用面向对象的多尺度分割算法,根据对象的光谱、形状等特征,实现了面向高分遥感数据的土地利用分类算法。该算法结合了面向地物对象和综合对象特征的分类方法,充分发挥了高分辨率影像进行精细地物分类的优势,得到了高精度的分类结果。通过西双版纳纳板河流域国家级自然保护区实例验证表明:该算法总体精度达到88.58%,Kappa系数达到0.77,精度符合应用要求,能够实现土地利用高精度、快速的分类。 相似文献
14.
为更好地监测离子吸附型稀土矿山的开采现状,选取赣南离子吸附型稀土矿区,采用最新高分辨率遥感数据,开展离子吸附型稀土矿矿山非法开采监测、环境破坏监测、矿山动态变化监测等示范研究。运用IKONOS数据结合矿权资料在赣南寻乌地区开展稀土矿山非法开采监测;在赣南寻乌地区提取土地荒漠化及水体污染等环境信息;利用两期QuickBird数据在赣南定南某矿区开展动态变化监测。研究表明高空间分辨率遥感数据处理与分析为离子吸附性稀土矿矿山快速、准确、动态监测提供了良好的技术手段。 相似文献
15.
从遥感影像中准确高效地提取道路信息,对基础地理数据库的建立与维护具有重大意义。高分辨率遥感影像背景信息复杂,导致现有算法无法较好地从中提取道路信息。U-Net网络在图像分割方面有较好的实验效果,但道路分割结果准确性不佳,因此,提出了一种改进U-Net网络的高分辨率影像道路提取方法。首先,设计基于U-Net的网络结构,将VGG16作为网络编码结构,可更好地提取特征语义信息;其次,利用Batch Normalization与Dropout解决网络训练过程中出现的过拟合;最后,对训练数据利用旋转与镜像变换进行扩充,采用ELU激活函数,提升了网络训练速度。实验结果表明:该方法可以较为准确高效地提取道路信息。 相似文献
16.
Accurate and efficient extraction of road information based on remote sensing image is a great significance for the establishment and maintenance of basic geographic databases. Due to the complex background information of high-resolution remote sensing images, existing algorithms cannot extract road information very well. U-Net network has good experimental results in image segmentation, but the accuracy of road segmentation results is not good. For this reason, this paper proposes a high-resolution image road extraction method based on improved U-Net network. Firstly, the U-Net-based network structure is designed and implemented. The network uses VGG16 as the network coding structure, which can extract feature semantic information better. Secondly, the use of Batch Normalization and Dropout solves the phenomenon of over-fitting that occurs during the network training process. Finally, the training data is expanded by rotation and mirror transformation, and the ELU activation function is used to improve the network training speed. The experimental results show that the method can extract road information more accurately and efficiently. 相似文献