首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究高径比大于1的复合材料圆柱壳的轴压屈曲性能及其失效模式,对2组单向纤维圆柱壳和3组外侧环裹环向纤维圆柱壳进行了轴压试验,观察了试件的受力过程和破坏形态,获得了荷载-位移曲线和荷载-应变曲线,利用有限元模型分析了单向纤维圆柱壳两种屈曲形式的破坏机制,对比分析了两种铺层试件的轴压性能。结果表明:单向纤维复合材料圆柱壳出现先纵向劈裂后板壳屈曲和先柱壳屈曲后纵向劈裂的两种破坏模式;外侧环向纤维可改善圆柱壳的轴压性能,屈曲发展有一定的阶段性并表现出延性特征,破坏形式和承载力均较为稳定。  相似文献   

2.
A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.  相似文献   

3.
A series of finite element analyses on the delaminated composite cylindrical shells subject to combined axial compression and pressure are carried out varying the delamination thickness and length, material properties and stacking sequence. Based on the FE results, the characteristics of the buckling and postbuckling behaviour of delaminated composite cylindrical shells are investigated. The combined double-layer and single-layer of shell elements are employed which in comparison with the three-dimensional finite elements requires less computing time and space for the same level of accuracy. The effect of contact in the buckling mode has been considered, by employing contact elements between the delaminated layers. The interactive buckling curves and postbuckling response of delaminated cylindrical shells have been obtained. In the analysis of post-buckled delaminations, a study using the virtual crack closure technique has been performed to find the distribution of the local strain energy release rate along the delamination front. The results are compared with the previous results obtained by the author on the buckling and postbuckling of delaminated composite cylindrical shells under the axial compression and external pressure, applied individually.  相似文献   

4.
The paper investigates the buckling behaviour of anisogrid composite lattice cylindrical shells under axial compression, transverse bending, pure bending, and torsion. The lattice shells are modelled as three-dimensional frame structures composed of curvilinear ribs subjected to the tension/compression, bending in two planes and torsion. The specialised finite-element model generation procedure (model generator/design modeller) is developed to control the orientation of the beam elements allowing the original twisted geometry of the curvilinear ribs to be closely approximated. The effects of varying the length of the shells, the number of helical ribs and the angles of their orientation on the buckling behaviour of lattice structures are examined using parametric analyses. Buckling of the lattice shells with cutouts is also analysed. The results of these studies indicate that the modelling approach presented in this work can be successfully applied to the solution of design problems.  相似文献   

5.
Benchmark solutions to the problem of buckling of orthotropic cylindrical shells, which are based on the three-dimensional theory of elasticity, are presented in this review article. It is assumed that the shell is under external pressure or axial compression or a combination of these loadings. These solutions provide a means of accurately assessing the limitations of the various shell theories in predicting critical loads. A comparison with some classical shell theories shows that the classical shell theories may produce, in general, highly non-conservative results on the critical load of composite shells with thick construction. One noteworthy exception: the Timoshenko shell buckling equations produce conservative results under pure axial compression.  相似文献   

6.
This paper investigates the buckling response of honeycomb sandwich composite shells with cutouts under axial compression. The Wilson's incompatible solid Finite Element (FE) is used around cutouts to obtain the detail stress distribution there. While to reduce the computational expense, a special multilayered relative degrees-of-freedom (DOF) shell FE is used to model the regions far from the cutouts. The efficiency and accuracy of this modeling scheme are illustrated by two benchmarks. Then parametric studies are carried out to reveal how the buckling response is influenced by the area, the shape and the orientation of cutouts.  相似文献   

7.
研究了完整、开口周边加强及开口加口盖3种型式的复合材料三分之一柱面壳的压缩屈曲性能,考查了3种典型复合材料柱面壳的轴压屈曲强度,分析了开口及口盖对柱面壳压缩稳定性的影响.结果表明:开口大大降低了柱面壳的轴压屈曲强度;口盖可以部分恢复其强度,但很难达到开口之前的水平.进行了开口加口盖经编织物铺层三分之一柱面壳轴向压缩试验,其轴压屈曲强度比用平面织物制造的相同结构的降低很多.为了探究其轴压屈曲强度比同类结构偏低很多的原因,进行了非均匀加载复合材料柱面壳模型有限元分析.结果表明:柱面壳边界不均匀加载会降低其承载能力,根据柱面壳刚度分布制定边界载荷可以提高其承载能力.  相似文献   

8.
This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision forin-situ measurement of the initial geometric imperfections. The shell models are made by rolling and seam welding process and hence are expected to have imperfections more or less of a kind similar to that of real shell structures. The present work thus differs from most of the earlier investigations. The measured maximum imperfections δmax are of the order of ±3t (t = thickness). The buckling loads obtained experimentally are compared with the numerical buckling values obtained through finite element method (FEM). In the case of axial buckling, the imperfect geometry is obtained in four ways and in the case of transverse shear buckling, the FE modelling of imperfect geometry is done in two ways. The initial geometric imperfections affect the load carrying capacity. The load reduction is considerable in the case of axial compression and is marginal in the case of transverse shear buckling. Comparisons between experimental buckling loads under axial compression, reveal that the extent of imperfection, rather than its maximum value, in a specimen influences the failure load. Buckling tests under transverse shear are conducted with and without axial constraints. While differences in experimental loads are seen to exist between the two conditions, the numerical values are almost equal. The buckling modes are different, and the experimentally observed and numerically predicted values are in complete disagreement.  相似文献   

9.
通过曲线纤维轨迹设计,变刚度复合材料回转壳将拥有比常刚度(直线纤维)回转壳更好的抗屈曲稳定性,为此,研究了复合载荷作用下曲线纤维铺层形式和几何参数对变刚度复合材料回转壳屈曲性能的影响规律。首先根据回转壳横截面圆弧变化改进曲线纤维角度线性描述方法,建立了变刚度复合材料回转壳的参数化有限元模型;其次,结合序列二次响应面方法和回转壳屈曲优化模型,搭建了复合材料回转壳曲线纤维轨迹优化的设计流程;最后,以准各向同性铺层复合材料回转壳为比较基准,对弯扭载荷作用变刚度圆柱壳和轴压、弯矩和扭矩分别作用变刚度椭圆柱壳在不同铺层方式、不同几何参数下的屈曲性能进行了优化比较。结果表明:弯扭载荷作用下,变刚度圆柱壳的屈曲性能随弯矩载荷占比增加而提高,且均好于准各向同性圆柱壳,但扭矩载荷占优时,优化常刚度圆柱壳的屈曲性能更具有优势;不同载荷作用下,具有较小截面方向比的变刚度椭圆柱壳屈曲性能要明显好于对应的准各向同性椭圆柱壳,且横截面越接近圆形,曲线纤维对椭圆柱壳屈曲性能的改善越弱。   相似文献   

10.
In this paper, buckling behaviors of composite cylindrical shells made from functionally graded materials (FGMs) subjected to pure bending load were investigated. The material properties were assumed to be graded along the thickness. The non-uniform bending force on the shell section was considered in the buckling government equation of FGM cylindrical shells based on the Donnell shallow shell theory. The prebuckling deformation of the FGM cylindrical shells was neglected and the buckling mode was assumed to occur non-uniformly in local district along the shell circumferential direction. The eigenvalue method was used to obtain the buckling critical condition. The theoretical results were in excellent agreement with those of ABAQUS code. Results show that the inhomogenity of the materials is significant for buckling of FGM cylindrical shells.  相似文献   

11.
Buckling analysis and design of anisogrid composite lattice conical shells   总被引:1,自引:0,他引:1  
Composite lattice anisogrid shells have now become a popular choice in many aerospace applications. Their use in various structural components, such as rocket interstages, payload adapters for spacecraft launchers, fuselage components for aerial vehicles, and parts of the deployable space antennas requires the development of more advanced finite-element models and analysis techniques capable of predicting buckling behaviour of these structures under variety of loadings. A specialised finite-element model generation procedure (design modeller) is developed and applied to the buckling analysis of the composite anisogrid conical shells treated as three-dimensional frames composed of the curvilinear ribs made of unidirectional composite material. Featuring a dedicated control procedure for positioning the beam elements, the design modeller enables a close approximation of the original twisted geometry of the curvilinear ribs. The parametric finite-element buckling analyses of the anisogrid conical shells subjected to axial compression, transverse bending, pure bending, and torsion showed the robustness and potential of the modelling approach. It was demonstrated that the buckling resistance can be significantly enhanced by either increasing the stiffness of a few hoop ribs located in the close proximity to the section with the larger diameter, or by introducing the additional hoop ribs in the same part of the conical shell. The effectiveness of the design analyses is demonstrated using particular examples. It has been shown that the resultant optimised designs can produce up to 22% mass savings in comparison with the non-optimised lattice shells.  相似文献   

12.
结构轻量化是航空航天发展的永恒主题, 波纹夹层圆柱壳作为常见的轻质结构形式, 在航空航天领域具有很大的发展空间。采用模具热压法, 制备出纵向和环向碳纤维复合材料波纹夹层圆柱壳, 其中芯子整体成型, 面板分瓣制备。采用经典板壳屈曲理论, 分析纵向和环向波纹夹层圆柱壳的轴压力学性能, 得到了欧拉屈曲、整体屈曲、局部屈曲和面板压溃4种失效模式下的极限载荷理论公式。绘制出结构的失效机制图, 直观显示出了失效模式与试件尺寸之间的关系。通过对纵向和环向波纹夹层圆柱壳的轴向压缩试验, 获得了结构的载荷-位移曲线及局部屈曲和面板压溃2种失效模式。结果表明:纵向波纹夹层圆柱壳的轴向承载能力及载荷/质量效率优于环向波纹夹层圆柱壳, 在一定范围内增加圆柱壳面板的厚度、减小圆柱壳的高度可提高结构的载荷/质量效率。   相似文献   

13.
轴向冲击荷载作用下薄壁圆柱壳屈曲变形研究一直受人们关注,探讨其动态响应的特征和机理,不仅可以丰富冲击屈曲研究内容,而且为提高结构的抗冲击能力提供理论基础。众多实验现象表明,圆柱壳在轴向冲击荷载作用下非对称屈曲时截面为规则几何形状,且不只三角形一种模式,也不是随机现象,而具有一定规律性。文章对环向截面屈曲耗能计算进行理论推导,通过分析对比屈曲耗能与折叠边数、圆柱壳半径的关系,根据最小耗能原理,证实变形规律存在,并分析得到,随半径增加圆柱壳非对称屈曲由三角形模式向多边形模式发展,最终有转变为轴对称变形模式的可能。  相似文献   

14.
模态缺陷条件下复合材料柱形壳屈曲特性   总被引:1,自引:0,他引:1  
为了开展多模态缺陷条件下复合材料柱形壳的屈曲特性研究,进行了理想柱形壳在轴压工况下的线性屈曲分析,得出前50阶屈曲失稳模式,即模态缺陷;基于弧长法研究不同模态缺陷条件下复合材料柱形壳的非线性屈曲特性;将有限元分析结果、NASA SP-8007规范计算结果与Bisagni试验结果作对比分析。结果表明:对于轴压柱形壳屈曲问题,第1阶模态缺陷不是最差缺陷,在第1阶模态缺陷条件下求出的非线性屈曲载荷比试验值高出较多;高阶模态缺陷条件下的复合材料柱形壳非线性屈曲计算结果与试验结果最为吻合,两者相差较少;屈曲载荷下降受缺陷形状、幅值双重影响,复合材料柱形壳屈曲计算需考虑多模态问题;NASA求出的屈曲载荷非常保守,低于试验值较多,用NASA方法进行复合材料柱形壳的设计,往往会导致结构笨重、材料浪费、性能降低。  相似文献   

15.
双层柱面网格扁壳的非线性稳定性分析   总被引:4,自引:0,他引:4  
基于等效夹层壳思想的双层网格扁壳非线性弯曲理论,对双层柱面网格壳体在均布压力作用下的非线性稳定性问题进行研究,采用伽辽金方法求得了简支边界条件下双层柱面网格扁壳的非线性载荷-位移关系式和临界屈曲载荷的解析表达式,讨论网壳结构几何参数对临界屈曲载荷的影响.  相似文献   

16.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to axial compression in thermal environments. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially-loaded, perfect and imperfect, FG-CNTRC cylindrical shells under different sets of thermal environmental conditions. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling load as well as postbuckling strength of the shell under axial compression. The results reveal that the CNT volume fraction has a significant effect on the buckling load and postbuckling behavior of CNTRC shells.  相似文献   

17.
复合材料圆柱壳的非线性稳定性分析   总被引:4,自引:0,他引:4       下载免费PDF全文
本文应用能量变分方法,对加筋多层的复合材料圆柱壳,进行了非线性稳定性分析,处理了均匀轴压和横向载荷两种载荷情况。文中用卡门-佟聂耳方程考虑了柱壳失稳时的几何非线性影响,同时通过剪切模量的非线性变化考虑了复合材料的物理并线性影响。本文也分析了初始缺陷对于屈曲特性的影响。文中具体计算了硼/环氧圆柱壳失稳的数值算例。分析和计算表明,材料的剪切非线性和初始缺陷的几何非线性对圆柱壳的屈曲特性有着显著的影响。  相似文献   

18.
《Composites Part B》2001,32(3):237-247
The bending, buckling and free vibration problems of non-homogeneous composite laminated cylindrical shells are considered. Hamilton–Reissner's mixed variational principle is used to deduce a consistent first-order theory of composite laminated cylindrical shells with non-homogeneous elastic properties. The governing equations with their required boundary conditions are derived without introducing any shear correction factors. Numerical results for the transverse deflections, stresses, natural frequencies and critical buckling loads are presented to show the advantages of this theory. The influences of the non-homogeneity and thickness ratio on the shell structural response are investigated. The study concludes that the inclusion of the non-homogeneity effect is required, even if it is weak, for predicting the actual structural response of the shells.  相似文献   

19.
采用基于水溶性型芯的RTM成型技术制备了整体化的复合材料翼盒, 并对翼盒进行了自由振动模态试验; 采用三维壳单元, 建立了翼盒固有模态及稳定性有限元分析模型, 该模型分析的翼盒固有模态与试验结果吻合很好, 验证了有限元模型的有效性; 为研究翼盒固有模态及稳定性的铺层效应, 采用该模型分析计算了4种铺层方案的翼盒的固有模态及稳定性。研究结果表明: 对称铺层蒙皮有利于提高翼盒轴向压缩与轴向扭转屈曲载荷及固有频率, 而不利于面外弯曲和弯扭组合情况; 腹板减薄和增加腹板45°铺层均不利于提高, 甚至会大幅度降低屈曲载荷及固有频率, 弯扭组合加载最容易导致失稳。  相似文献   

20.
The present study explores the modification and control of prebuckling stiffness of cylindrical shells for their potential use in smart structures. The effects of surface-bonded microfiber composite actuator patches on cylindrical shells subjected to axial compression are studied experimentally. The actuators are placed such that the distance separating them is less than the observed axial and circumferential buckling wavelengths. Strain gauge sensors are used to measure the axial strains at discrete locations on the cylindrical shell. Experimental results indicate that the actuation effect can reduce the local strains as well as improve the overall stiffness of the structure. The results obtained in this study potentially have a significant impact in space applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号