首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et4N+) and tetrafluoroborate (BF4) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et4N+ into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li+. For the positive electrode, BF4 was shown to intercalate above +4.3 V versus Li/Li+. The characteristic G-band doublet peak (E2g2(i) (1578 cm−1) and E2g2(b) (1600 cm−1)) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm−1) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm−1) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM).  相似文献   

2.
Nanostructured Pt electrodes were prepared by electrodeposition of Pt nanoparticles on different substrates (GC, Pt and Au) under cyclic voltammetric conditions and with various number (n) of potential cycling, and were denoted as nm-Pt/S(n) (S = GC, Pt and Au). Adsorption of (bi)sulfate on the nm-Pt/S(n) was studied by in situ FTIR reflection spectroscopy. It has been revealed that the nanostructured Pt electrodes exhibit anomalous IR properties for (bi)sulfate adsorption regardless of the different reflectivity of substrate, i.e. the IR absorption of (bi)sulfate species adsorbed on all the nm-Pt/S(n) electrodes is significantly enhanced and the IR band direction is completely inverted in comparison with the same species adsorbed on a bulk Pt electrode. The two IR bands around 1200 and 1110 cm−1 attributed to adsorbed (bi)sulfate species are shifted linearly with increasing electrode potential, yielding Stark tuning rates () of 152.1 and 21.1 cm−1 V−1 on nm-Pt/GC(20), respectively. Along with increasing n, the Stark tuning rate of the IR band around 1200 cm−1 decreases quickly and declined to 7.6 cm−1 V−1 on nm-Pt/GC(80), while the Stark tuning rate of the IR band near 1100 cm−1 is fluctuated between 23.0 and 16.2 cm−1 V−1. It has determined that the enhancement of IR absorption of (bi)sulfate adsorbed on nanostructured Pt electrode is varied with substrate material and n, and a maximal 16-fold enhancement of the IR band near 1200 cm−1 has been measured on the nm-Pt/GC(30) electrode. The in situ FTIR studies illustrated that the adsorption of (bi)sulfate occurs mainly in the double layer potential region, and reaches a maximum around 0.80 V. The results demonstrated also that the competitive adsorption of CO and oxygen species can inhibit completely (bi)sulfate adsorption, which has evidenced a weak interaction of (bi)sulfate with nm-Pt/S(n) electrode surface.  相似文献   

3.
A novel polymer electrolyte based on PMAML/PVDF-HFP blend   总被引:1,自引:0,他引:1  
A gel polymer electrolyte based on the blend of poly(methyl methacrylate-co-acrylonitrile-co-lithium methacrylate) (PMAML) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared and characterized. The synthesized PMAML were characterized by FTIR and NMR, respectively, and the surface morphology of the PMAML and PVDF-HFP blend membrane was also observed by scanning electron microscope (SEM). The electrochemical properties of composite electrolyte membranes were studied. The ionic conductivity of the polymer electrolyte composed of 75 wt.% 1 M LiBF4 in ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC:DMC=1:1 by weight) was about 2.6×10−3 S cm−1 at ambient temperature. The electrochemical window of the polymer electrolyte was about 4.6 V determined from the linear sweep voltammetry plot. The lithium ion polymer batteries were assembled by sandwiching gel polymer electrolyte between LiCoO2 cathode and mesophase carbon fibre (MPCF) anode. Charge-discharge test results display that lithium ion batteries with these gel polymer electrolytes have good electrochemical performance.  相似文献   

4.
The interfacial phenomena between Cu electrode and solution of lithium perchlorate in ethylene carbonate (EC)-dimethyl carbonate (DMC) have been investigated using in situ reflection absorption Fourier transform infrared (FTIR) spectroscopy and single reflection ATR-FTIR spectroscopy. The ATR spectra confirmed the bands due to free EC and DMC and the molecules solvated to lithium ions in the solution. The bands due to the result of the interaction between ClO4 and DMC in the mixture solution also appeared in the ATR spectra. In the FTIR spectra, the potential dependence on the concentration of EC and DMC in the vicinity of the Cu electrode was observed. It was understood that the reversible changes in the concentration of free EC and DMC and solvated EC and DMC in the diffuse double layer take place with changing in potential. As the potential decreased, the free EC and DMC concentrations increased, while the concentration of the EC and DMC solvated to lithium ions decreased. Thus, it can be concluded that the equilibrium shifts from Li+(EC)2(DMC)2 to Li+(EC)2(DMC) + DMC or Li+(EC)(DMC)2 + EC as the potential decreases. The bands due to (CH2OCO2Li)2 and CH3OCO2Li were observed for an irreversible reaction.  相似文献   

5.
We have investigated the adsorbed intermediates of ethanol electro-oxidation at Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) using FTIR and SFG spectroscopies. Mainly, we focus on the CO formation. The aim of the present work is to compare the responses coming from two different surface probes: FTIR spectroscopy and SFG spectroscopy. Between 1800 cm−1 and 2300 cm−1, our FTIR and SFG results are in good agreement. Specifically in the case of the ethanol/Pt(1 1 1) interface, the SFG spectroscopy presents higher sensibility to the interface response compared to the FTIR spectroscopy.  相似文献   

6.
A gel polymer electrolyte based on poly(acrylonitrile-co-styrene) as polymer matrix and N-methyl pyridine iodide salt as I source was prepared. Controlling the concentration of polymer matrix of poly(acrylonitrile-co-styrene) at 17.5 wt.%, mixing the binary organic solvents mixture ethylene carbonate and propylene carbonate with 6:4 (w/w), and the concentration of N-methyl pyridine iodide and iodine with 0.5 and 0.05 M, respectively, the gel polymer electrolyte attains the maximum ionic conductivity (at 30 °C) of 4.63 mS cm−1. Based on the gel polymer electrolyte, a quasi-solid state dye-sensitized solar cell was fabricated and its overall energy conversion efficiency of light-to-electricity of 3.10% was achieved under irradiation of 100 mW cm−2.  相似文献   

7.
Limiting current densities equivalent to the transport-controlling step of lithium ions in organic electrolytes were measured by using a rotating disk electrode (RDE). The diffusion coefficients of lithium ion in the electrolyte of PC/LiClO4, EC : DEC/LiPF6 and EC : DMC/LiPF6 were determined by the limiting current density data according to the Levich equation. The diffusion coefficients increased in the order of PC/LiClO4<EC : DEC/LiPF6<EC : DMC/ LiPF6 with respect to molar concentration of lithium salt. The maximum value of diffusivity was 1.39x10-5cm2/s for 1M LiPF6 in EC : DMC=1 : 1. Exchange current densities and transfer coefficients of each electrolyte were determined according to the Butler-Volmer equation.  相似文献   

8.
Polyethylene (PE) separator grafted with 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (siloxane) was newly prepared by electron beam irradiation. The degree of grafting and morphology of the grafted separators were characterized by FT-IR and scanning electron microscopy (SEM). The polymer electrolytes based on the grafted separators were prepared by immersing the separators in the electrolyte containing 1 M LiPF6 in EC/DMC (1:1 by volume). The ionic conductivity of the grafted separators was changed with the degree of grafting and showed the highest value of 7 × 10−4 S cm−1 at the degree of grafting of 6%. The electrochemical stability limit of the grafted separator with the degree of grafting of 6% was increased to 5.2 V. The Li ion cell using the grafted separator also showed an improved performance, suggesting that the grafted separator is a good candidate for the separator of lithium batteries at high voltage operation.  相似文献   

9.
Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm−1 and ca. 3400 cm−1, which are known to be due to the symmetric OH stretching (υ1) of tetrahedrally coordinated, i.e., strongly hydrogen bonded “ice-like” water, and the asymmetric OH stretching (υ3) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded “liquid-like” water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity.  相似文献   

10.
The second order Raman signals around the G′-band region of graphite and carbon nanotubes have been investigated at more than 15 excitation laser lines. Two distinct Raman bands have been observed around 2700 cm−1; a prominent one is due to the so-called G′-band and the other is a weak band around 2450 cm−1. Both two bands can be from the double resonance process involving two phonons around the K-point in the phonon dispersion of a two-dimensional graphite. The 2450 cm−1-band has exhibited little power dependence, whereas the intensity of G′-band has shown large photon energy dependence as already reported. The 2450 cm−1-band and the G′-band correspond to non-dispersive q = 0 and fully-dispersive q = 2k, respectively. From the phonon dispersion and the corresponding phonon frequency, the 2450 cm−1-band can be assigned as an overtone mode of LO phonon (i.e. 2LO). This is revealed by calculated Raman spectra of graphite with proper electron-phonon matrix elements. The present study is the first report on the origin and assignment of the 2450 cm−1-band, which is based on the double resonance Raman scattering.  相似文献   

11.
Edy Marwanta 《Polymer》2005,46(11):3795-3800
Polymer electrolytes with high ionic conductivity and good elasticity were prepared by mixing nitrile rubber (poly(acrylonitrile-co-butadiene) rubber; NBR) with ionic liquid, N-ethylimidazolium bis(trifluoromethanesulfonyl)imide (EImTFSI). The NBR/EImTFSI composites were obtained as homogeneous and transparent films when the ionic liquid content was less than 60 wt%. Raman spectroscopy suggested the interaction between nitrile group of NBR and TFSI anion. Sample with ionic liquid content of 50 wt% showed the ionic conductivity of 1.2×10−5 S cm−1 at 30 °C. Addition of lithium salt to this NBR/EImTFSI composite further enhanced the ionic conductivity to about 10−4 S cm−1 without spoiling mechanical properties. DSC studies showed two glass transition temperatures for composites indicating microphase separation.  相似文献   

12.
Qian Cheng 《Electrochimica acta》2010,55(27):8273-8279
Pt tetrahexahedral (Pt-THH) nanocrystals enclosed with 24 {h k 0} facets, Pt nanothorns (Pt-Thorn) with a high surface density of atomic steps, and congeries of Pt nanoparticles (Pt-NP) were prepared and served as catalysts to study the electrocatalytic reduction of both adsorbed and solution nitric oxide. The structure sensitivity for the reduction of a saturated NO adlayer on the Pt nanocrystals (NCs) of different shape was studied by cyclic voltammetry (CV) and in situ FTIR spectroscopy in sulphuric acid solutions. The results revealed that two types of NO adsorbates can be reduced independently at separated potentials, i.e. the reduction of linear bonded NO (NOL) on the Pt-NP electrode gives rise to a current peak at −0.01 V (vs. SCE), while the bridge adsorbed NO (NOB) yields a current peak at −0.08 V. The in situ SNIFTIRS results confirmed the assignment of NO adsorbates, i.e. the NOB species yielding a IR absorption bipolar band with its negative-going peak at 1636 cm−1 and positive-going peak around 1610 cm−1, and the NOL species giving rise to a bipolar band with its negative-going peak at 1809 cm−1 and positive-going peak around 1720 cm−1. It has determined that the NOL species can be preferentially formed on the Pt NCs with open surface structure, i.e. the more open the surface structure of the Pt NCs, the larger the relative quantity of NOL versus NOB. It has also revealed that the Pt NCs with a high surface density of atomic steps exhibit superior electrocatalytic activity for the reduction of solution NO species. The steady-state current density of NO reduction on Pt-THH NCs is 7.5-12 times as large as that on Pt-NP, and that on Pt-Thorn is 2.5-4 times of that on Pt-NP in the reduction potential region of electrochemical dynamic control.  相似文献   

13.
In the present study, are reported investigations obtained with the room temperature molten salt (RTMS) ethyl-methyl-imidazolium bis-(trifluoromethanesulfonyl)-imide (EMI-TFSI) in order to use it as solvent in lithium battery. The thermal stability, viscosity, conductivity and electrochemical properties are presented. A solution of 1m lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) in EMI-TFSI has been used to test the electrolyte in a battery with LiCoO2 and Li4Ti5O12 as respectively cathode and anode materials. Cycling and power measurements have been obtained. The results have been compared with those obtained with a molten salt formulated with a different anion, BF4 and with a conventional liquid organic solvent EC/DMC containing LiTFSI. The 1m LiTFSI/EMI-TFSI electrolyte provides the best cycling performance: a capacity up to 106 mAh g−1 is still delivered after 200 cycles, with 1C rate at 25 °C.  相似文献   

14.
Regenerated Bombyx mori silk fibroin in formic acid was electrospun and the morphological, chemical and mechanical properties of these nanofibers were examined by field emission environmental scanning electron microscopy (FESEM), Raman spectroscopy (RS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and tensile testing. FESEM indicated that the average fiber diameter was less than 100 nm and circular in cross section. This paper maps the silk fibroin molecular conformations of each step of the sample preparation and the electrospinning process. The secondary structural compositions (random and β-sheet) of the fibroin were determined by FTIR and RS. The crystallinity index of the electrospun fiber, calculated as the intensity ratio of 1624 (β-sheet) and 1663 (random) cm−1 FTIR bands was higher than that of the pristine fiber. Raman spectra of the amide I (1665 cm−1, random) to amide III (1228 cm−1, β-sheet) ratio of the electrospun fiber was less than that of the pristine fiber indicative of higher β-sheet content. The fiber crystallinity, determined by XRD, showed a lower value for the electrospun fiber. The electrospun fiber shows small but significant increases in the β-sheet content in comparison with the pristine fiber. Dissolution of fibroin in formic acid enhances β-sheet crystallization and may facilitate β-sheet formation in electrospun fiber. The electrospun random silk mat had a Young's modulus, ultimate tensile strength and strain of 515 MPa, 7.25 MPa and 3.2%, respectively.  相似文献   

15.
In this paper, we compare two procedures for the synthesis of palladium (Pd)/polycarbonate (PC) nanocomposites as well as their morphological, optical, thermal and electrical properties. Pd nanoclusters were produced by the reduction of palladium chloride using a variation of Brust's method. Discrete Pd nanoclusters of ∼15 nm size were formed in the absence of PC in the reaction mixture (ex situ method) while agglomeration of Pd nanoclusters was noticed in the presence of PC in the reaction mixture (in situ method). Fourier transform infrared spectroscopy (FTIR) suggests nanoparticle-polymer interactions and polymer conformational changes in the in situ nanocomposite films. Even after having the same Pd content, the ex situ nanocomposites films were found to transmit more light than the in situ nanocomposites. The glass transition temperature (Tg), decreased by ∼16 °C for both the ex situ and in situ samples. Thermogravimetric analysis (TGA) indicated that the presence of Pd nanoclusters significantly improved the thermal stability of the nanocomposites, as evidenced by the enhanced onset of degradation by ∼20 °C and ∼40 °C for the in situ and ex situ nanocomposites, respectively. The electrical conductivity measurement shows a dramatic difference between these nanocomposites with a significantly higher value for the in situ nanocomposite (resistivity = 2.1 × 105 Ωm) compared to the ex situ nanocomposite (resistivity = 7.2 × 1013 Ωm).  相似文献   

16.
A gel polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and fully cyanoethylated cellulose derivative (DH-4-CN) was prepared and characterized. Thermal, mechanical, swelling, liquid electrolyte retention and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, were investigated using thermogravimetric analysis, electrochemical impedance spectroscopy, linear sweep voltammetry, and scanning electron microscopy. The results showed that the addition of DH-4-CN could obviously improve the conductivity of PVDF-HFP based electrolyte. The maximum ionic conductivity of 4.36 mS cm−1 at 20 °C can be obtained for PVDF-HFP/DH-4-CN 14:1 in the presence of 1 M LiPF6 in EC and DMC (1:1, w/w). The dry blend membranes exhibit excellent thermal behavior. All the blend electrolytes are electrochemically stable up to about 4.8 V vs. Li/Li+ for all compositions. The results reveal that the composite polymer electrolyte qualifies as a potential application in lithium-ion battery.  相似文献   

17.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

18.
The combination of Fourier transform Raman spectroscopy and thermal analysis has been proved to be adequate for the study of the quantitative structural changes which take place in amorphous poly(ethylene 2,6-naphthalate) on annealing. Different conformer contents were found in the annealed samples depending on annealing conditions. In general, annealing of the amorphous poly(ethylene 2,6-naphthalate) from the glassy state induces a conformational transition of gauche to trans. The structure obtained during crystallization is characterized by a three-phase conformational model, including an amorphous phase, a rigid amorphous phase and a crystalline phase. The crystallization is further characterized by a three-zone process, firstly a primary crystallization process, secondly a variation of the rigid amorphous phase with a constant value of the crystalline phase and thirdly a secondary crystallization process. The bandwidth at half intensity at 1721 cm−1 in the Raman spectrum varied between 32 cm−1 for the complete amorphous phase and 7 cm−1 for the total rigid phase, the sum of the rigid amorphous and crystalline phase. The bandwidth at half intensity at 1721 cm−1 was directly related to the amount of the total rigid phase and confirmed by the variation of the heat capacity increase at the glass transition temperature. Two complementary bands in the Raman spectrum, at 1107 and 1098 cm−1, were found to be related to the trans and gauche isomers. A difference was measured between the total trans content and the amount of rigid phase due to the presence of some trans conformations in the amorphous phase. The extrapolation of the bandwidth at half intensity at 1721 cm−1 to the value of zero, corresponding to the complete crystalline phase, gave a melting enthalpy of 196 J/g and the corresponding density of the crystalline phase was 1.4390 g/cm3. A complete rigid phase structure was obtained by a melting enthalpy of 144 J/g and a density of 1.4070 g/cm3.  相似文献   

19.
M. Holzapfel  C. Jost  F. Krumeich  H. Buqa 《Carbon》2005,43(7):1488-1498
1-Ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMI-TFSI) is shown to reversibly permit lithium intercalation into standard TIMREX® SFG44 graphite when vinylene carbonate (VC) is used in small amounts as additive. The best performance was obtained when 5% of VC was added to a 1 M solution of LiPF6 in EMI-TFSI. Intercalation of lithium in the SFG44 graphite host was demonstrated over 100 cycles without noticeable capacity fading. The reversible charge capacity was around 350 mA h g−1 and an only small irreversible capacity loss per cycle could be observed. Li4Ti5O12 was used as counter electrode material. Scanning electron microscopy indicates the reduction of the electrolyte without graphite exfoliation in the neat electrolyte and the formation of a passivation film in the case of a VC-containing electrolyte. Other additives that were tested comprise ethylene sulphite and acrylonitrile which show also a positive effect, but a smaller one than vinylene carbonate. LiCoO2 positive electrodes were cycled in a 1 M solution of LiPF6 in EMI-TFSI with good charge capacity retention over more than 300 cycles, when Li4Ti5O12 was used as counter electrode. The formation of a passivation film is proven on the LiCoO2-electrodes, when the electrolyte contained VC, but not in the neat ionic liquid. Finally, the stable cycling of a full cell configuration is proven in this electrolyte system. An ammonium-containing ionic liquid (methyltrioctylammonium-bis(trifluoromethylsulfonyl)-imide, MTO-TFSI) is shown to permit the cycling of both, graphite and lithium cobalt oxide when VC is used as additive in small amounts, but at slightly elevated temperatures.  相似文献   

20.
A new gel-type polymer electrolyte (GPE) was made by the copolymerizing acrylonitrile (AN) and (2-methylacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester) (GMA-IDA). The copolymer mixed with a plasticizer—propylene carbonate (PC) and lithium salt to form GPE. The lithium salts are LiCF3SO3, LiBr and LiClO4. FT-IR spectra show that the lithium ion in the LiClO4 system has the strongest interaction with the group based on the plasticized polymer. FT-IR spectra also indicate that CF3SO3 prefers producing anion-cation association. Moreover, the 13C solid state NMR spectra for the carbons attached to the PC of GPE exhibited different level of chemical shift (158.5 ppm) when the different lithium salts were added to the electrolyte. The results of differential scanning calorimeter (DSC) also indicate that the LiClO4 system has more free lithium ions; therefore, it has the maximum conductivity. In this study, the highest conductivity 2.98 × 10−3 S cm−1 exists in AG2/PC = 20/80 wt.% system which contain 3 mmole (g-polymer)−1 LiClO4. Additionally, the polymer electrolytes, which contain GMA-IDA have better interfacial resistance stability with lithium electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号