首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

2.
Perovskite-type ternary oxides with molecular formulae, La2−xSrxNiO4 (0 ≤ x ≤ 1), were prepared by a modified citric acid sol-gel route at 600 °C for their possible use in a direct methanol fuel cell (DMFC). The study was conducted by cyclic voltammetry, chronoamperometry, impedance and anodic Tafel polarization techniques. The results showed that the electrocatalytic activity of the base oxide (x = 0) in 1 M KOH plus 1 M CH3OH at 25 °C increases with x, the observed current densities being 23.6, 47.3, 43.2 and 50.9 mA cm−2 at a scan rate of 10 mV s−1 and E = 0.6 V versus Hg/HgO for oxides with x = 0, 0.25, 0.5 and 1.0, respectively. All the four perovskite anodes used in this study did not indicate any poisoning by the methanol oxidation intermediates/products. The methanol electro-oxidation reaction followed a Tafel slope of ∼2 × 2.303RT/3F (=40 mV decade−1) on each oxide catalyst, regardless of Sr content.  相似文献   

3.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

4.
The La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+ and K+) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr2+ substitution, which show an ionic radii slightly higher than La3+ (e.g. 0.08 S cm−1 for La2Mo2O9 and 0.06 S cm−1 for La1.9Sr0.1Mo2O9−δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13-16) × 10−6 K−1 between room temperature and 753 K and (18-20) × 10−6 K−1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O2/air and decreases substantially under wet 5% H2-Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.  相似文献   

5.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

6.
Eu-doped perovskites La0.65−xEuxSr0.35MnO3 (0.05 ≤ x ≤ 0.30) were synthesized by sol–gel method using citric acid and characterized by X-ray diffraction, magnetization, resistivity and magnetoresistance (MR) experiments. All samples had a single hexagonal perovskite structure. As x increased from 0.05 to 0.30, the Curie temperature TC for the samples decreased from 352 to 242 K. It was found that two transition points appeared when the resistivity changed with increasing temperature, and upon an application of a magnetic field of 20 kOe the maximum magnetoresistivity of 18% for the La0.65−xEuxSr0.35MnO3 with x = 0.20 was obtained at room temperature 300 K. The mechanism of the transitions for the samples was explored.  相似文献   

7.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

8.
Y2−xLaxW3O12 solid solutions were successfully synthesized by the solid state reaction method. The microstructure, hygroscopicity and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and thermal mechanical analysis (TMA). Results indicate that the structural phase transition of the Y2−xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phase can form for 0≤x≤0.4 with orthorhombic structure and for 1.5≤x≤2 with monoclinic one. High lanthanum content leads to a low relative density of Y2−xLaxW3O12 ceramic. Thermal expansion coefficients of the Y2−xLaxW3O12 (0≤x≤2) ceramics also vary from −9.59×10−6 K−1 to 2.06×10−6 K−1 with increasing substituted content of lanthanum. The obtained Y0.25La1.75W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.66×10−6 K−1 from 103 °C to 700 °C.  相似文献   

9.
In order to study the effect of Sr substitution on structural and dielectric properties of Bi1−xSrxMnO3 (0.40≤x≤0.55) compounds were synthesized by the solid state reaction method. The as-prepared samples were characterized by X- ray diffraction (XRD) and dielectric measurements to correlate structural changes with dielectric properties. The XRD data were further analyzed by the Rietveld refinement. The highest dielectric constant was observed in Bi0.55Sr0.45MnO3 and Bi0.5Sr0.5MnO3 systems (∼106) mainly because of orientation polarization. The charge ordering temperature decreases with increasing Sr concentration in Bi1−xSrxMnO3 systems.  相似文献   

10.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

11.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

12.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

13.
The kinetics of the oxygen reduction reaction (ORR) were examined on a series of Pt100−xyNixPdy ternary alloys. Films were produced by electrodeposition that involved a combination of underpotential and overpotential reactions. For Pt-rich Pt100−xyNixPdy alloy films (x < 0.65) Ni co-deposition occurred at underpotentials while for Ni-rich films (x > 0.65) deposition proceeded at overpotentials. Rotating disk electrode (RDE) measurements of the ORR kinetics on Ni-rich Pt100−xyNixPdy thin films revealed up to ∼6.5-fold enhancement of the catalytic activity relative to Pt films with the same Pt mass loading. More than half of the electrocatalytic gain may be attributed to surface area expansion due to Ni dealloying. Surface area normalization based on the Hupd charge reduced the enhancement factor to a value less than 2. The most active ternary alloy film for ORR was Pt25Ni73Pd2. Comparison of the ORR on Pt, Pt20Ni80, Pt25Ni73Pd2 thin films indicate that the binary alloy is the most active with a Hupd normalized ORR enhancement factor of up to 3.0 compared to 1.6 for the ternary alloy.  相似文献   

14.
Composite film electrodes containing mechanically mixed MnxCu1−xCo2O4 (0 ≤ x ≤ 1) particles, carbon black Vulcan XC72R and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were formed on the glassy carbon disk surface of a rotating ring-disk electrode (RRDE) and studied for the oxygen reduction and evolution reactions (ORR and OER, respectively) in 1 M KOH solution. The electrocatalytic activities for both reactions were observed to depend strongly on the Mn content in CuCo2O4. An opposite trend was observed for the apparent and intrinsic electrocatalytic activities for the ORR; the simultaneous presence of Cu and Mn was found to be detrimental to the intrinsic charge density, but beneficial to the geometric charge density with a maximum for Mn0.6Cu0.4Co2O4. The latter was characterized by the highest total number of electrons exchanged per O2 molecule, n, close to 4, greater k1 (4e process)/k2 (2e process) ratios, and by a unique and low Tafel slope (−41 mV dec−1). The results obtained for the OER showed that the intrinsic electrocatalytic activity is determined by the number of active sites (Co4+) electrochemically formed at the oxide surface prior to the OER, from Co3+ cations. The partial substitution of Cu by Mn in CuCo2O4 was found to decrease the OER activity.  相似文献   

15.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

16.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

17.
(LaxSr1−x)MnO3 (LSMO) and (LaxSr1−x)FeO3 (LSFO) (x = 0.2–0.4) ceramics prepared by a simple and effective reaction-sintering process were investigated. Without any calcination involved, La2O3 and SrCO3 were mixed with MnO2 (LSMO) or Fe2O3 (LSFO) then pressed and sintered directly. LSMO and LSFO ceramics were obtained after 2 and 4 h sintering at 1350–1400 and 1200–1280 °C, respectively. Grain size decreased as La content increased in LSMO and LSFO ceramics.  相似文献   

18.
The electrochemical properties and electrocatalytic performance of nanocrystalline oxide powders of the type IrxSn1−xO2 (0.2≤x≤1) have been examined. These oxides have been developed primarily as oxygen evolution electrocatalysts for proton exchange membrane (PEM) water electrolysers. The modified polyol method was used to prepare these oxides, by reducing precursors in ethylene glycol followed by thermal oxidation at 500 ° C. The materials were characterised in 0.5 mol dm−3 H2SO4 and PEM electrolytes by cyclic voltammetry, electrochemical impedance spectroscopy, and steady state polarisation measurements. Some comparisons were made between the electrochemical properties of the oxides in the different electrolytes.  相似文献   

19.
Negative thermal expansion materials ZrW2−xMoxO8 (0 ≤ x ≤ 2) have been successfully synthesized by the reaction of a mixture of ammonium tungstate and ammonium molybdate with zirconium oxynitrate using a hydrothermal method. Effect of substituted ion Mo on the microstructure, α-to-β and cubic to trigonal phase transition in resulting ZrW2−xMoxO8 powders was examined by the XRD experiments. It was found that the structural phase transition temperature decreased slightly with increasing substituted content. The cubic to trigonal phase transition was also influenced by substituted content. The resulting products decomposed to WO3/MoO3 and ZrO2 as temperature increasing when x ≤ 0.5 and while x > 0.5, the cubic phase transited to trigonal phase. The effect of substituted Mo on the morphology of resulting products was also investigated by SEM experiments.  相似文献   

20.
Y2−xLaxMo3O12 (x=0, 0.5, 2) ceramics were successfully synthesized by the solid state reaction method. The microstructure, composition and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and dilatometry. Results indicate that the Y1.5La0.5Mo3O12 crystallizes in monoclinic Tb2Mo3O12-type structure and it is non-hygroscopic. The Y1.5La0.5Mo3O12 ceramic is denser than the Y2Mo3O12 and La2Mo3O12 ceramics, and its relative density can reach 94.12% of the theoretical value. Most importantly, it shows almost zero thermal expansion and its thermal coefficient is 0.87×10−6 K−1 from 178 °C to 600 °C. Y2Mo3O12 ceramic shows negative thermal expansion whereas La2Mo3O12 ceramic shows positive thermal expansion, their thermal expansion coefficients being−12.06×10−6 K−1 and 8.88×10−6×10−6 K−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号