首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(9):12911-12920
Wear failure is a bottleneck restricting applications and developments of Ti3SiC2 ceramic. Particles reinforced composites provide an effective strategy to resist wear. In this work, Ti(C,N) particles are used as reinforcements, and Ti3SiC2/Ti(C,N) composite is fabricated by vacuum hot-pressing. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffract meter (XRD) are used to investigate composite morphologies, compositions and phases before and after hot-pressing. Meanwhile, high-temperature cyclic oxidations and tribological behaviors of composites under various loads, speeds and Ti(C,N) contents are characterized. Results show that as-prepared composite is relatively dense, and Ti(C,N) addition plays an important role in particle reinforcement of Ti3SiC2. Meanwhile, its hardness, wear resistance, cyclic oxidation resistance and corrosion resistance are significantly improved. In addition, wear characteristics and mechanisms of composites under different loads and speeds are analyzed in details. This work shows great potentials in developing engineering applications of ceramics, especially in high-temperature, oxidizing, frictional and corrosive environments.  相似文献   

2.
镁合金微弧氧化工艺及陶瓷层耐蚀性能研究   总被引:2,自引:0,他引:2  
通过单因素试验讨论了镁合金微弧氧化电解液各组分对成膜的作用,得到电解液最佳配方:10g/L(NaPO3)6,5g/LNH4F,6g/LKOH,6mL/LC3H8O3。用扫描电镜(SEM)、X射线衍射(XRD)和能谱(EDS)分析了陶瓷膜层的表面形貌、截面形貌、相组成及元素组成;采用点滴试验、交流阻抗和盐雾试验考察了陶瓷层的耐腐蚀性能。结果表明:膜层表面分布着大量均匀的放电微孔,孔径在1~3μm之间,膜层截面内层与基体过渡部分呈犬牙交错状态,结合良好;膜层由大量非晶态相及少量MgO组成,耐蚀性能优良。P与F元素的存在,证明了电解液组分较好地参与了微弧氧化反应。  相似文献   

3.
金属陶瓷涂层耐蚀性能研究   总被引:5,自引:0,他引:5  
李青  陈艳 《电镀与涂饰》1999,18(4):19-24,57
采用溶胶-凝胶浸渍提拉法在不锈钢、纯铜及铝合金基体上制备具有保护性的SiO2、ZrO2、TiO2、Al2O3及SiO2-TiO2陶瓷涂层,利用阳极极化曲线的、循环动电位极曲线、点蚀电位的测量以及三氯化铁和5%硫酸介质中的腐蚀试验研究了所得陶瓷涂层的耐蚀性。结果表明,这些陶瓷涂层能大幅芳提高金属基体在各种腐蚀介的耐蚀性。  相似文献   

4.
A black ceramic coating with high absorptivity and emissivity was successfully prepared on TA7 (Ti-5Al-2.5Sn) in a hybrid electrolyte solution by plasma electrolytic oxidation for improving the imaging precision of optical system. The influence of electrolyte components and technical parameters on the composition, structure, and optical properties was investigated. The results show the coatings with typically porous structure are mainly composed of O, P, Si, Ti, V, Fe, and Ni. The corresponding amorhous oxide in the outer layer endows the coating with strong absorption in the visible light and infrared areas, and the crystallized TiO2 indwelling the inner layer contributes to the strong UV absorption property. In addition, the micropores of the coatings have different size ranges corresponding to the wavelengths, facilitating the increase of absorptivity and emissivity in some degree. The absorptivity and emissivity can be adjusted by electrolyte components and technical parameters. The coating presents the best absorptivity of 0.962 and emissivity of 0.950 in the electrolyte solution of 3 g/L NH4VO3, 5 g/L FeSO4, and 5 g/L C4H6O4Ni under 400 V for 10 minutes.  相似文献   

5.
The influence of five variables (i.e. deposition temperature, time, bath pH, and concentrations of Cr3+ compound (KCr(SO4)2) and H3PO4) on the preparation of Cr3+ coating on Al 6063 alloy was investigated using AC impedance spectroscopy (EIS) in 3.5 wt% NaCl. The optimal conditions were determined by AC impedance spectroscopy. The results indicated that the formation and quality of the coating were very sensitive to the deposition bath pH. A mechanism was proposed to explain the results. A simple model was derived and experimentally tested in terms of an equivalent circuit. Good agreement was found between the model predictions and the experimental results. The morphologies of the coated and uncoated electrodes were examined by scanning electron microscopy (SEM), and the results also support the proposed surface model.  相似文献   

6.
《Ceramics International》2022,48(10):13676-13683
An ideal self-sealing hydroxyapatite (HA)-MgO coating was designed on an AZ31 Mg alloy by one-step microarc oxidation (MAO) with the addition of HA nanoparticles into a base electrolyte. The formation mechanism of the self-sealing HA-MAO coating was discussed. The effect of the nano-HA addition on the corrosion resistance of the MAO coating was evaluated by corrosion tests in Hank's solution. The results show that HA nanoparticles inertly incorporated into the MAO coating during the process of coating growth. HA and MgO were the main constituents of the HA-MAO coating. The HA nanoparticles were absent in the inner barrier layer but concentrated in the outer porous layer. In addition, HA nanoparticles accumulated much more inside coating defects than in the other zones, which resulted in the nearly ideal sealing of micropores on the coating surface. By forming a denser and more stable outer layer, the incorporation of HA nanoparticles greatly enhanced the anti-corrosion properties of the MAO coating.  相似文献   

7.
TiO2涂层耐蚀性能和抗高温氧化性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法在碳钢表面制备TiO2涂层。用正交设计法对水解反应温度、涂覆次数、热处理温度和时间4因素进行了优化,并考察了上述4因素对涂层在10%(体积分数)H2SO4介质中的耐蚀性能和650℃空气气氛中的抗高温氧化性能的影响。  相似文献   

8.
After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.  相似文献   

9.
Ni-B alloy coatings with different boron content ranging from 4 to approximately 28 at.% were prepared by electrodeposition in a nickel-plating bath containing sodium decahydroclovodecaborate as a boron source. The influence of the boron concentration in the coatings on their structure, morphology, electrochemical and corrosion behavior, physico-mechanical and electrical properties was investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and other methods. It was found that the electrodeposited Ni-B coatings with relatively low boron content (≤8 at.%) are nanocrystalline and comprise a solid solution of boron in f.c.c. Ni lattice having a mixed substituted-interstitial type. Further increase in the boron content (up to 10-15 at.%) leads to the appearance of heterogeneous amorphous-nanocrystalline structure, and the coatings with a high boron content (20 at.% and above) are X-ray amorphous. Polarization measurements in neutral NaCl solutions showed that the Ni-B coatings with relatively low boron content demonstrate a potential region of low anodic currents associated with the passive film formation at the alloy surface. The anodic current in this potential region increases significantly with increasing the boron content above 10 at.%, suggesting the non-protective nature of the anodic film formed on the amorphous Ni-B alloys. Immersion tests monitored by EIS measurements revealed a significantly better corrosion performance of the Ni-B coatings with low boron content (4 at.%) in comparison with that of the amorphous coatings. The microhardness and wear resistance of the Ni-B coatings essentially increases with increasing the boron content. Maximum microhardness and wear resistance were found for the coatings containing 8 at.% B.  相似文献   

10.
采用含硅酸钠14g/LK、氟化钠14g/L、氢氧化钠2g/L和甘油5 mL/L的电解液,以微弧氧化技术在ZE10镁合金的表面成功制备了微弧氧化膜.采用涡流测厚仪、扫描电镜、X射线衍射、电化学工作站等,研究了电压和时间对镁合金微弧氧化膜的厚度、表面形貌和耐蚀性的影响.结果表明,微弧氧化膜层主要由MgO、MgF2和Mg2S...  相似文献   

11.
In this article, electrochemical behaviors and their topography observation for four organic coatings used in seawater, by using both electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) methods to study environment behaviors of different coatings as well as the effects of their film formation, pigments, and fillers on anticorrosion behaviors, were measured. The results show that polyurethane, epoxy, and chlorinated rubber coatings all present one capacitive loop in their tested EIS which contains phenomenally only one time constant, whereas alkyd coating presents two capacitive semicircle arcs. With two capacitive loops, the capacitive semicircle in the high frequency range represents barrier layer property, but the semicircle in the low frequency range represents corrosion reaction of metals under the film. Polyurethane coating used in seawater has well anticorrosion property in seawater immersion test. The appearance features of different layers are visible different between different layers of tested coatings at their surface topography. The property of polyurethane paint film coated on metal is better than other layers, and film of alkyd coating has many pits at its surface by observing the layer's images. AFM photos imaged have also been used to further detail surface topography for four organic coatings, and to approve effects of topography of these coatings on its electrochemical behaviors, from two views of both height and phase modes. It is beneficial to explain deeply the environment behaviors and degradation mechanism of organic coatings. To further study failure of these organic coatings and dynamic processes of corrosion of metal under the film, two equivalent circuit models, according to these tested EIS, have been suggested to explain the corrosive kinetics of these four coatings. To polyurethane, epoxy, and chlorinated rubber coatings used in seawater which have good protection effects for substrate metal, the diffusion process for water, from their layer's surface to interface of film/metal, is mainly controlled factor for degradation. However, the electrochemical reaction process has may become a control procedure for corrosion of alkyd coated metal. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
《Ceramics International》2017,43(17):15095-15106
In this work, low-pressure cold-sprayed Ni-Zn-Al2O3 intermediate layers were deposited between supersonic–plasma-sprayed NiCr-Cr3C2 surface layers and underlying low-carbon steel layers to form a sandwich structure that enhances the corrosion resistance of non-skid NiCr-Cr3C2 coatings. The corrosion performance of these bi-layer non-skid coatings and that of a single-layer coating were investigated through electrochemical measurements and observations of their corrosion morphologies. The novel non-skid coating with a top layer possessing a fine powder grain size exhibited the best corrosion resistance because of the pseudopassivation of the interlayer and physical barriers created by the corrosion process. The intermediate layer substantially improved the corrosion resistance of the non-skid coatings.  相似文献   

13.
Homogeneous and adherent polyaniline coatings were electrosynthesized on aluminum (Al) alloy 3004 (AA 3004) from an aqueous solution containing aniline and oxalic acid by using the galvanostatic polarization method. A higher applied current density in the polymerization stage proved to be the best condition to adopt for the synthesis of more compact and strongly adherent polyaniline coatings on Al. The corrosion performances of polyaniline coatings were investigated in 3.5% NaCl solution by the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS).Potentiodynamic polarization and electrochemical impedance spectroscopy studies reveal that the polyaniline acts as a protective layer on Al against corrosion in 3.5% NaCl solution. The current corrosion decreases significantly from 6.55 μA cm−2 for uncoated Al to 0.158 μA cm−2 for polyaniline-coated Al. The corrosion rate of the polyaniline-coated Al is found to be 5.17 × 10−4 mm year−1, which is ∼40 times lower than that observed for bare Al. The potential corrosion increases from −1.015 V versus SCE for uncoated Al to ∼−0.9 V versus SCE for polyaniline-coated Al electrodes. The positive shift of ∼0.11 V in potential corrosion indicates the protection of the Al surface by the polyaniline coatings.The synthesized coatings were characterized by UV-visible absorption spectrometry, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Optical absorption spectroscopy reveals the formation of the emeraldine form of polyaniline. The results of this study clearly ascertain that the polyaniline has outstanding potential to protect the AA 3004 alloy against corrosion in a chloride environment.  相似文献   

14.
Effective corrosion protection of 8090 alloy by cerium conversion coatings   总被引:1,自引:0,他引:1  
A. Conde 《Electrochimica acta》2008,53(26):7760-7768
Conversion treatments based on immersion in Cr(VI) aqueous solutions are key technologies that combine low cost, easy application and high performance. However, they are environmentally problematic due to their carcinogenity and genotoxicity. Among the potential alternatives, treatments based on rare-earth compounds have drawn attention due to the stability of their oxides and their environmental acceptability. Despite the amount of work published, there is not yet an industrially suitable alternative treatment for aircraft aluminium alloys that is able to provide the required corrosion protection. A common feature of these alloys is the high level of copper in their chemical composition. Although the presence of copper in an alloy may enhance cerium deposition, high copper content alloys (AA2024, AA7075) have proven the most difficult to protect with Ce conversion coatings.In the present work, a commercial 8090-T8 aluminium alloy containing 1.15 weight percent (wt.%) Cu was coated with a Ce conversion coating at room temperature from a Ce bath without prior pretreatment of the specimens. Polarisation curves revealed that the presence of a cerium conversion coating (CeCC) reduces by two orders of magnitude the corrosion rate of the AA8090 alloy in a sodium chloride solution. Impedance measurements exhibited capacitive behaviour for the CeCC up to 216 h, showing that the cerium layer protects the bare alloy in the aggressive solution.Electrochemical tests have therefore revealed that these conversion layers afford long-lasting protection; withstanding up to 168 h in Salt Spray test.  相似文献   

15.
Electropolymerization baths for polypyrrole coating typically consist of two main constituents: monomer and counter-ion. By adding saccharin as the third constituent, a new branch emerges in electropolymerization that will yield coatings with modified properties. In the present study, polypyrrole is galvanostatically deposited onto carbon steel in an aqueous solution containing 0.2 M pyrrole and 0.1 M oxalic acid as the supporting electrolyte with (0.25, 0.5, 2.5 g/l) and without saccharin addition. Determination of the corrosion resistance of coatings in 0.1 M NaCl solution shows that in the presence of 0.5 g/l saccharin, a more noble corrosion potential and a greater corrosion resistance are obtained. Electrochemical impedance spectroscopy (EIS) revealed that the corrosion process was under infinite diffusion control of ions during prolonged immersion. The results indicate that the lower diffusion rate of ions in the coating produced in the presence of 0.5 g/l saccharin is responsible for its better corrosion resistance. Atomic force microscopy (AFM) shows that greater compaction of the coating produced in the presence of 0.5 g/l saccharin could be the reason for its higher corrosion resistance.  相似文献   

16.
固液混合铸造Al-Cr合金的耐蚀性能研究   总被引:1,自引:0,他引:1  
采用固液混合铸造新技术制备了Al-10Cr合金,通过对固液混合铸造Al-10Cr合金的阳极极化曲线测定,考察了其腐蚀性能。结果表明,当加粉量为40%、粉末粒度为74~175μm时可获得均匀的细晶组织,且耐腐蚀性能优于不加粉半固态铸造Al-10Cr合金。  相似文献   

17.
《Ceramics International》2023,49(15):24783-24793
The defects, micropores, and microcracks on the plasma electrolytic oxidation (PEO) coating severely affect the long-term anti-corrosion feature. Inclusion of additives in the electrolyte is a feasible and effective strategy to attain the more intact PEO coating. The PEO coatings are fabricated on AZ31B Mg alloys in an silicon-based electrolyte with Na3VO4 (OPEO), NaVO3 (MPEO), and V2O3 (VPEO), respectively, to explore the influence of additives on the corrosion resistance. MPEO sample has the smallest poriness and pore size unfolding the best anti-corrosion resistance, which is also consistent with the electrochemical analysis. Even after 336 h salt spray test, the MPEO coating exhibits the least corrosion. The excellent anti-corrosion performance of MPEO sample is the synergistic effect of inorganic salts and multiple metal oxides generated in the formation of PEO coating. Inclusion of inorganic salt with valence change metal is a feasible pathway to achieve the compact PEO coating since multiple metal oxides could be produced and deposited in the PEO coating during the fabrication.  相似文献   

18.
The corrosion distribution along a coil-coating sample formed by deep-drawing is reported. The formed rectangular cup was divided in five different regions and their impedance response investigated independently. The response of each region was compared with the overall sample response and the morphology of degradation was studied by scanning electron microscopy. Severe attack was observed in the most strained regions (corners and edges). Micro-defects in the shape of pinholes and cracks developed as a consequence of the forming process, apparently nucleating in the vicinity of the inorganic particles present in the paint. Immersion increased the size and number of defects. The overall impedance was reconstructed from the impedance measured in the local regions by two methods: (a) calculation using the local experimental data and (b) simulation using an equivalent electrical circuit with the values taken from the fitting of the local experimental data.  相似文献   

19.
在钝化膜组成成分研究的基础上,详细研究了工艺条件对Zn-Fe合金钝化膜耐蚀性的影响,从而得到了最佳的工艺条件。对Zn-Fe合金钝化膜性能进行了测试,并采用5%NaCl中性溶液浸泡试验对Zn镀层、Zn-Fe合金镀层及Zn-Fe-TiO2复合镀层黑色钝化膜的耐蚀性进行了比较。结果表明,经黑色钝化后,Zn-Fe合金镀层及Zn-Fe-TiO2复合镀层的耐蚀性都有很大的提高;Zn-Fe合金镀层的耐蚀性是纯锌镀层的3倍多,而Zn-Fe-TiO2复合镀层的耐蚀性是Zn-Fe合金镀层的2倍多,是纯锌镀层的5倍左右。  相似文献   

20.
To clarify the role of interface morphology and thermally grown oxide (TGO) in the failure of environmental barrier coatings (EBCs). In this study, the effect of chemical expansion on free energy was considered based on the continuous thermodynamic framework. The effects of roughness and TGO growth on the stress distribution of EBCs were investigated. The results showed that the stress coupling effect led to the inhomogeneous growth of TGO by affecting the gas diffusion and gas inflow rate. The TGO thickness at the peak increased with increasing roughness, and the TGO thickness at the valley and the middle position decreased with increasing roughness. The y-direction at the TGO/EBC valley and the TGO/BC peak under tensile stress increased with the TGO thickness and roughness and may be the first to fail in delamination. The calculation results of the model can provide a theoretical basis for the coating design and manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号