首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Nickel sulfides are perfect anode materials for high-capacity and low-cost lithium-ion batteries (LIBs); however, with the shortcoming of polysulfide intermediate dissolution, volume expansion exceeding the limit during cycling also restricts their development. Herein, NiS/C composite materials are successfully anchored on chestnut shell fluff (CSF)-derived biochar by a glucose-auxiliary hydrothermal method along with an annealing treatment. The CSF biochar acts as an effective electron transmission channel for the rapid lithiation/delithiation of NiS and as a fixed sulfur carrier for inhibiting the dissolution of polysulfide. Glucose restrains the accumulation of NiS particles and then transforms into uniform amorphous carbon during annealing, which is more effective in buffering for rapid volume variation. Moreover, the CSF-NiS/C electrode exhibits a remarkable specific capacity of 1522.8 mAh g-1 (0.1 A g-1) and distinguished rate performance with 295 mAh g-1 capacity (3 A g-1), which are better than those of the pure NiS/C anode material displays. Researchers may be inspired by both of these reasonable design and synthesis strategies that are beneficial for the development of high-performance nickel-based sulfide anode materials for LIBs.  相似文献   

2.
《Ceramics International》2018,44(18):22664-22670
NiO-ZnO/RGO composite was obtained by the annealing of an Ni (OH)2-Zn (OH)2/RGO precursor, which has been fabricated by in situ ultrasonic agitation. Moreover, the NiO-ZnO nanoflakes are evenly distributed on the RGO sheets based on the scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization results. When the NiO-ZnO/RGO composite was used as an anode material in lithium-ion batteries (LIBs), the electrodes exhibited a high reversible capacity of 1017 mA h/g at a current density of 100 mA/g after 200 cycles and a specific capacity of 458 mA h/g at 500 mA/g even after 400 cycles. The electrode even reached a capacity of 185 mA h/g at a current density of 2000 mA/g. The excellent electrochemical properties of the NiO-ZnO/RGO composite might be attributable to the NiO-ZnO nanoflakes offering rich electrochemical reaction sites and shortening the diffusion length for lithium ion (Li+), as well as the RGO sheets improving the transfer rates of Li+ and electron during the charge-discharge process.  相似文献   

3.
《Ceramics International》2020,46(17):26598-26607
A highly stable Si/SiOx/C composite was synthesized in this study through NaOH etching and carbon-coating approaches for use as an anode material in Li-ion batteries (LIBs). The two-step process not only enhanced the electronic conductivity of the as-synthesized Si/SiOx/C composite by using the two-step etching/coating processes to enhance the columbic efficiency of Si during cycling processes but also architecturally provided an amorphous Si/SiOx composite to buffer volume expansion. The Raman spectroscopy and X-ray diffraction results demonstrate that the etching process involves a transition from crystalline Si to amorphous SiOx. The Fourier transform infrared spectroscopy results further confirm that the vibration mode of Si–O bonding changes from symmetric to asymmetric. The Brunauer–Emmett–Teller analysis reveals that we can control specific surface area and pore-size distribution of NaOH-modified Si by tuning the parameters pertaining to the solid content of Si in NaOH solution. After optimizing the etching and carbon-coating processes, the modified Si/C composite delivered ~780 mAh g−1 for more than 200 cycles at 0.5C, which was better than un-modified one of 315 mAh g−1 after 200 cycles. The results clearly indicate that we could improve cycle stability of Si anode drastically through the NaOH etching process and carbon coating modification. The proposed methodology may provide a potential approach to promoting the synthesis of Si-based anodes for use in the commercial applications of LIBs.  相似文献   

4.
Yan Liu 《Electrochimica acta》2008,53(5):2507-2513
Co3O4 microspheres were synthesized in mass production by a simple hydrothermal treatment. One micrometer-sized spherical particles with well-crystallization could be obtained by XRD and SEM. Higher specific surface area (93.4 m2 g−1) and larger pore volume (78.4 cm3 g−1) by BET measurements offered more interfacial bondings for extra sites of Li+ insertion, which resulted in the anomalous large initial irreversible capacity and capacity cycling loss due to SEI film formation. The capacity retention of Co3O4 microspheres involved first forming acted as Li-ion anode material is almost above 90% from 12th cycle and it retain lithium storage capacity of 550.2 mAh g−1 after 25 cycles, which show good long-life stability. The electrochemical impedance spectroscopy (EIS) tests before and after cyclic voltammetry measurements and charge-discharge experiments were carried out and the corresponding DLi values were also calculated. The relationship of the ac impedance spectra and the cycling behaviors was discussed. It is found that the decrease of capacity results from the larger Li+ charge-transfer impedance and the lower lithium-diffusion processes on cycling, which is in very good agreement with the electrochemical behaviors of Co3O4 electrode.  相似文献   

5.
《Ceramics International》2017,43(3):3252-3258
In this study, we report a facile strategy for anchoring Li4Ti5O12 (LTO) particles wrapped within carbon shells onto graphene nanosheet (GNS) using the freeze-drying assisted microwave irradiation method. In this designed structure, a conductive three-dimensional network can be formed by connecting the GNS and carbon layer which is benefit for the transport of electron and Li+-ion. When used as anode material for lithium-ion batteries, this hybrid composite exhibits an excellent high-rate performance with specific capacities of 171.5, 168.2, 160.1, 151.7 and 136.4 mAh g−1 at various current rates of 1, 2, 5, 10 and 20 C, respectively. Furthermore, the specific capacity of the obtained anode still retains 99.6% of the initial value after 20 cycles at 20 C. The enhanced battery performance can be attributed to the improved electronic conductivity of each LTO grain via uniform carbon coating and GNS wrapping. As a consequence, this novel strategy developed in this study may open a new way to fabricate other electrodes for advanced renewable energy conversion and storage applications.  相似文献   

6.
Li2ZnTi3O8 fibers are synthesized by thermally treating electrospun Zn(CH3COO)2/LiOAc/TBT/PVP fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li2ZnTi3O8 fibers have an average diameter of 200 nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. The results show that as-prepared Li2ZnTi3O8 has a high specific discharge capacity of 227.6 mAh g−1 at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good cycling capacity and rate capability. The obtained results thus strongly support that the electrospinning method is an effective method to prepare Li2ZnTi3O8 anode material with higher capacity and rate capability.  相似文献   

7.
《Ceramics International》2015,41(6):7511-7518
Core/shell-structured nanocapsules consisting of a nickel cobaltite (NiCo2O4) nanoparticle core encapsulated in an onion-like carbon (C) shell are synthesized by arc-discharge and air-annealing methods. Void spaces between NiCo2O4 core and the carbon shell are observed in the NiCo2O4/C nanocapsules. Lithium-ion batteries fabricated using the nanocapsules as the anode material exhibit enhanced initial coulombic efficiency of 82.3% and specific capacity of 1197.2 mA h/g after 300 cycles at 0.2 A g−1 current density. Varying the rate of charge/discharge current from 0.2 to 4 A/g does not show negative effects on the recycling stability of the nanocapsules and a recoverable specific capacity as high as 1270.4 mA h/g is obtained. The introduction of the onion-like C shell and the presence of the void spaces are found to increase the contact areas between the electrolyte and the nanocapsules for improved electrolyte diffusion, to enhance the electronic conductivity and ionic mobility of the NiCo2O4 nanoparticle cores, and to accommodate the change in volume during the lithium-ion insertion/extraction process.  相似文献   

8.
Carbon-coating of sub-μm SiO particles (dmax = 0.36 μm, d50 = 0.69 μm) by a fluidized-bed chemical-vapor-deposition process has produced unique nano-porous SiO/C secondary particles within which the SiO primary particles are “glued” together by carbon to form a network that possesses randomly distributed pores with sizes in the nano-meter range and a bulk porosity of >30%. Upon lithiation/delithiation cycling in an organic Li-ion electrolyte, the electrode made of the SiO/C particles exhibited reduced polarization, smaller irreversible electrode expansion, and remarkably enhanced cycling performance, as compared with that of pristine SiO particles. The reduced electrode expansion exhibited by the SiO/C electrode can be attributed to the combination of diluted SiO content and presence of pre-set voids, which could partially accommodate volume expansion arising from lithiation of the SiO primary particles. These effects render the SiO/C electrode structurally more robust than the SiO electrode against volumetric variations upon cycling.  相似文献   

9.
Nanometer copper-tin alloy anode materials with amorphous structure were prepared by a reverse microemulsion technique for lithium-ion batteries. It was found that the electrochemical performance of alloy was influenced by its particle size, which was controlled by appropriate surfactant content. The nanometer copper-tin alloy with particle size of 50-60 nm presented the best performance, showing a reversible specific capacity of 300 mA h/g over the full voltage range 0.0-1.2 V and capacity retention of 93.3% at 50 cycles. A great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy. The contact resistance between nanometer particles resulted in the poor electric conductivity and the match of particle size and conductive agent content had a great impact on the electrochemical performance of the nanometer copper-tin alloy anode.  相似文献   

10.
A gas–liquid interfacial synthesis approach has been developed to prepare SnO2/graphene nanocomposite. The as-prepared nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller measurements. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO2 nanoparticles (2–6 nm in size) on graphene matrix. The electrochemical performances were evaluated by using coin-type cells versus metallic lithium. The SnO2/graphene nanocomposite prepared by the gas–liquid interface reaction exhibits a high reversible specific capacity of 1304 mAh g−1 at a current density of 100 mA g−1 and excellent rate capability, even at a high current density of 1000 mA g−1, the reversible capacity was still as high as 748 mAh g−1. The electrochemical test results show that the SnO2/graphene nanocomposite prepared by the gas–liquid interfacial synthesis approach is a promising anode material for lithium-ion batteries.  相似文献   

11.
A rheological phase reaction method was introduced to synthesize LiNiVO4 powder material. The product was tested using XRD, SEM and electrochemical measurement methods. It was found that single crystal grain LiNiVO4 is easily prepared with the rheological phase reaction; the intermediate product NiV(IV)O3 is the electrochemical active center; the product prepared at 700 °C for 18 h possess the best morphology of single crystal body and exhibits excellent performance as anode material with a small capacity fade. This indicates that LiNiVO4 is a good anode material for lithium-ion batteries and the rheological phase reaction is a simple, economical and effective method to synthesize a series of functional materials.  相似文献   

12.
《Ceramics International》2019,45(12):14775-14782
In this article, we have reported a one-step scalable synthesis of MgCo2O4 nanostructures as efficient anode material for Li-ion batteries and investigated the role of post-synthesis calcination temperature (400, 600 and 800 °C) on its physiochemical properties and electrochemical performances. The XRD pattern of the calcinated sample at 400 °C (MC 400) indicates a pure phase of MgCo2O4. However, on increasing the calcination temperature to 600 °C (MC 600), an additional phase corresponding to MgO was detected and the corresponding XRD peak intensity further increased on increasing the calcination temperature to 800 °C (MC 800 °C). This was accompanied by a morphological transformation from flake and rod-like nanostructures, to an agglomerated dense flake-like morphology. Electrochemical studies revealed that the calcination temperature plays an important role in determining the electrochemical performance of the MgCo2O4 as anode material. In a half cell, the MC 600 showed the best electrochemical performance with high discharge capacity of 980 mA h g−1 (2nd discharge at 60 mA g−1) and a reversible discharge capacity of 886 mA h g−1 at the end of 50 cycles with high coulombic efficiency of 98%. Long term stability was carried out at 0.5C which showed a capacity retention of 358 mA h g−1 at the end of 500 cycles. The superior electrochemical performance of the MC600 can be attributed to the presence of the small amount of MgO, which is believed to provide the anode materials better structural stability during cycling. The claim was further supported by ex-situ TEM analysis of the anode material of a cycled cell (50 cycles).  相似文献   

13.
The influences of LiBF4, LiClO4, lithium bis(oxalato) borate (LiBOB), LiPF6 with VC and without VC, and the mixed electrolytes composed of different ratios of LiBOB and LiPF6 or LiClO4 on the electrochemical properties of Si/graphite/disordered carbon (Si/G/DC) composite electrode were systematically investigated by constant current charge-discharge and electrochemical impedance spectra (EIS) techniques. Scanning electron microscopy (SEM) was used to observe the change of electrodes in morphology after given cycle numbers. X-ray photoelectron spectroscopy (XPS) was employed to understand the influences of different mixed electrolytes on the composition of SEI layers. The results showed that Si/G/DC composite electrode in the mixed electrolytes presented better electrochemical performance than in single electrolyte. The compactness and compositions of SEI layers intensively influenced the cycle performance of Si/G/DC composite materials. LiBOB and additive VC had a good synergistic effect on the formation of the dense SEI layers. In particular, Si/G/DC in 0.5 M LiBOB + 0.38 M LiPF6 electrolytes containing VC exhibited a high reversible capacity and excellent cycle performance.  相似文献   

14.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

15.
SnO2/carbon composite anode materials were synthesized from SnCl4·5H2O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO2/carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO2. Metallic Sn starts to emerge at 500 °C. High Sn content in SnO2/carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO2/carbon annealed at 500 °C exhibits high specific capacity (∼400 mAh g−1), stable cycling performance and good rate capability. The generation of Li2O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.  相似文献   

16.
Sn-Fe/carbon nanocomposites were synthesized by the mechanochemical treatment of Sn with various amounts of an Fe/C composite through the pyrolysis of Fe(III) acetylacetonate. The composites were then evaluated as alternative anode materials for rechargeable lithium batteries. Based on the obtained ex situ X-ray diffraction (XRD) data, X-ray absorption spectroscopy (XAS) results, and differential capacity plots (DCPs), a reaction mechanism was suggested. It was found that increasing the amounts of the SnFe phase and pyrolyzed carbon in the composite improved its electrochemical characteristics in terms of its capacity retention.  相似文献   

17.
Coaxial MnO/C nanotubes with an average diameter of about 450 nm, a wall thickness of about 150 nm, a length of 1–5 μm and a 10 nm thick carbon layer have been prepared using β-MnO2 nanotubes as self-templates in acetylene at 600 °C. The microstructure of the product has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The electrochemical performance of the product has been evaluated by galvanostatic charge/discharge cycling. It is found that the product exhibits a reversible capacity of nearly 500 mAh g−1 at a current density of 188.9 mA g−1, and 83.9% of capacity retention, higher than bare MnO nanotubes (58.2%) and MnO nanoparticles (25.8%). The results reveal that coaxial MnO/C nanotubes would be a promising anode material for next-generation lithium-ion batteries.  相似文献   

18.
Homogenous ultra-fine SnO2/TiO2 particles encapsulated into carbon nanofibers (SnO2/TiO2@CNFs) with a uniform and ordered one-dimensional fibrous structure are fabricated through facile electrospinning technique and subsequent heat treatments, which are confirmed by XRD, Raman, TG, SEM, TEM, and XPS analyses. The battery performance reveals that the SnO2/TiO2@CNFs-1.5:1 (1.5:1 denotes the mole ratio of SnO2 to TiO2 in the carbon nanofibers) electrode displays the optimal electrochemical properties among the whole samples, which can deliver the initial charge and discharge specific capacity of 1061.2 and 1494.8 mAh/g with a coulombic efficiency of 71.0% at 100 mA/g, and exhibit a remarkable specific capacity of 766.1 mAh/g after 200 cycles. Moreover, the SnO2/TiO2@CNFs-1.5:1 electrode displays a high pseudocapacitive contribution of 73.9% at the scan rate of 2 mV/s and the lithium ion diffusion coefficient of approximately 1.20 × 10?15 cm2 s?1. The excellent electrochemical performance of the SnO2/TiO2@CNFs-1.5:1 electrode is closely correlated with the synergetic effect of the proper amount of TiO2 that enhances the electrochemical stability of the electrode and provides fractional capacity, and the flexible and conductive carbon nanofiber matrix that accommodates volume changes and increases overall electronic conductivity. The detailed investigations of the as-prepared electrode materials by a facile electrospinning process may pave possible instructions for the next generation SnO2-based anodes and other related electrospun anodes for the energy storage device.  相似文献   

19.
Bismuth can alloy with lithium to generate Li3Bi with the volumetric capacity of about 3765 mAh cm?3 (386 mAh g?1), rendering bismuth-based materials as attractive alloying-type electrode materials for rechargeable batteries. In this work, bismuth-based material Bi5Nb3O15 @C is fabricated as anode material through a traditional solid-state reaction with glucose as carbon source. Bi5Nb3O15 @C composite is well dispersed, with small particle size of 0.5–2.0?µm. The electrochemical performance of Bi5Nb3O15 @C is reinforced by carbon-coated layer as desired. The Bi5Nb3O15 @C exhibits a high specific capacity of 338.56 mAh g?1 at a current density of 100?mA?g?1. And it also presents an excellent cycling stability with a capacity of 212.06 mAh g?1 over 100 cycles at 100?mA?g?1. As a comparison, bulk Bi5Nb3O15 without carbon-coating only remains 319.62 mAh g?1 at 100?mA?g?1, revealing poor cycle and rate performances. Furthermore, in-situ X-ray diffraction experiments investigate the alloying/dealloying behavior of Bi5Nb3O15 @C. These insights will benefit the discovery of novel anode materials for lithium-ion batteries.  相似文献   

20.
Sen Zhao 《Electrochimica acta》2010,55(12):3891-3896
Nanosized CaSnO3 is synthesized by a hydrothermal process and characterized by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). The SEM observation shows the sample has a porous flowerlike morphology. The electrochemical results exhibit that the stable and reversible capacity of 547 mAh g−1 is obtained after 50 cycles at 60 mA g−1 (0.1 C) and the corresponding charge capacity is determined to be 316 mAh g−1 at the current density of 2.5 C. Cyclic voltammetry and electrochemical impedance spectroscopy data are analyzed to complement the galvanostatic results. The observed excellent performance is attributed to the porous structure and large surface area of flowerlike CaSnO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号