首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a strategy for synthesizing lithium methacrylate (LiMA)-based self-doped gel polymer electrolytes was described and the electrochemical properties were investigated by impedance spectroscopy and linear sweep voltammetry. LiMA was found to dissolve in ethylene carbonate (EC)/diethyl carbonate (DEC) (3/7, v/v) solvent after complexing with boron trifluoride (BF3). This was achieved by lowering the ionic interactions between the methacrylic anion and lithium cation. As a result, gel polymer electrolytes consisting of BF3-LiMA complexes and poly(ethylene glycol) diacrylate were successfully synthesized by radical polymerization in an EC/DEC liquid electrolyte. The FT-IR and AC impedance measurements revealed that the incorporation of BF3 into the gel polymer electrolytes increases the solubility of LiMA and the ionic conductivity by enhancing the ion disassociations. Despite the self-doped nature of the LiMA salt, an ionic conductivity value of 3.0 × 10−5 S cm−1 was achieved at 25 °C in the gel polymer electrolyte with 49 wt% of polymer content. Furthermore, linear sweep voltammetry measurements showed that the electrochemical stability of the gel polymer electrolyte was around 5.0 V at 25 °C.  相似文献   

2.
2-(2-methyloxyethoxy)ethanol modified poly (cyclotriphosphazene-co-4,4′-sufonyldiphenol) (PZS) nanotubes were synthesized and solid composite polymer electrolytes based on the surface modified polyphosphazene nanotubes added to PEO/LiClO4 model system were prepared. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to investigate the characteristics of the composite polymer electrolytes (CPE). The ionic conductivity, lithium ion transference number and electrochemical stability window can be enhanced after the addition of surface modified PZS nanotubes. The electrochemical investigation shows that the solid composite polymer electrolytes incorporated with PZS nanotubes have higher ionic conductivity and lithium ion transference number than the filler SiO2. Maximum ionic conductivity values of 4.95 × 10−5 S cm−1 at ambient temperature and 1.64 × 10−3 S cm−1 at 80 °C with 10 wt % content of surface modified PZS nanotubes were obtained and the lithium ion transference number was 0.41. The good chemical properties of the solid state composite polymer electrolytes suggested that the inorganic-organic hybrid polyphosphazene nanotubes had a promising use as fillers in solid composite polymer electrolytes and the PEO10-LiClO4-PZS nanotubes solid composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.  相似文献   

3.
New polymer gel electrolytes containing ionic liquids were developed for modern chemical power sources—supercapacitors and lithium-ion batteries. Ternary systems polymer-ionic liquid-aprotic solvent as well as materials containing also lithium salts (LiClO4 or LiPF6) were prepared by direct, thermally initiated polymerisation. Poly(2-ethoxyethyl methacrylate) PEOEMA was combined with various ionic liquids based on 1-methylimidazole. Only 1-butyl-3-methylimidazolium hexafluorophosphate BMIPF6 formed a homogenous and slightly translucent polymer electrolyte, where aprotic solvents—propylene carbonate and ethylene carbonates were used as plasticisers. Materials were studied using the electrochemical and thermogravimetric methods and exhibit high ionic conductivity up to 0.94 mS cm−1 at 25 °C together with high electrochemical stability: the accessible potential window on the glassy carbon was found ca. 4.3 V. Prepared non-volatile materials are long-term and thermally stable up to 150 °C.  相似文献   

4.
J.-H. Shin 《Electrochimica acta》2005,50(19):3859-3865
Solvent-free P(EO)20LiTFSI + PYR14TFSI polymer electrolyte films with PYR14+/Li+ mole ratios ranging from 0.96 to 3.22 were prepared by hot-pressing mixtures composed of PEO, LiTFSI and PYR14TFSI of selected stoichiometries. The PYR14TFSI room temperature ionic liquid (RTIL) is homogeneously incorporated into the P(EO)20LiTFSI membrane without phase separation. For a PYR14+/Li+ mole ratio of 3.22, the ionic conductivity was about 2 × 10−4 S/cm at 20 °C, i.e., more than one order of magnitude higher than that of the RTIL-free electrolyte. The electrochemical stability window of the polymer electrolyte containing the RTIL was about 6 V (versus Ag/Ag+). Li/V2O5 cells with the polymer electrolyte (PYR14+/Li+ = 1.92) showed a 60% capacity retention after 80 cycles at 40 °C (the initial capacity was 210 mA h/g). Li/V2O5 cells (PYR14+/Li+ = 1.28) held at 30 °C delivered about 93 mA h/g (at 0.057 mA/cm2), which corresponds to approximately 34% utilization of the active material. These results suggest that the incorporation of the RTILs into PEO-based polymer electrolytes is very promising for the future realization of solid-state lithium metal polymer batteries operating near ambient temperatures.  相似文献   

5.
Hyperbranched network-based gel copolymer electrolytes are synthesized by in situ free radical polymerization. This research is separated into two parts: the first is an investigation of modified bismaleimide oligomer (MBMI) as a free volume additive, and the second investigates the salt concentration effect on high power application. A polymer electrolyte with MBMI additive provided more free volume space, and the ionic conductivity of gel copolymer electrolytes was measured as a function of the salt concentration of lithium hexafluorophosphate (LiPF6). The highest ionic conductivity and the lowest activation energy of hyperbranched-network gel copolymer electrolytes were determined to be 7.72 × 10−3 S/cm at 23 °C and 5.41 kJ/mol, respectively. Furthermore, the MBMI additive and the optimal concentration of lithium salt increased the free space for carrier ions and contributed to increasing capacity and working voltage at a high rate discharge (8C). The reliability and cycling ability of lithium polymer batteries are as good as lithium ion batteries for potential electric vehicle (EV) application.  相似文献   

6.
An EC/DEC [40:60% (v/v)] solvent mixture has been added in various amounts to the ionic liquid (IL) hexyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1116-NTf2) in the presence of LiNTf2 (lithium bis(trifluoromethylsulfonyl)imide) as lithium salt for possible use as electrolytes in lithium-ion batteries. These electrolytes exhibit a larger thermal stability than the reference electrolyte EC/DEC [40:60] + LiNTf2 1 M when the percentage of the IL exceeds 30% (v/v). All studied electrolytes are glass forming ones with an ideal glass transition temperature of ca. −85 °C(±5 °C), which has been determined by application of the VTF theory to conductivity and viscosity measurements and confirmed by DSC (Tg = −90 ± 5 °C). An electrochemical window of about 5 V versus Li/Li+ was measured at a glassy carbon electrode. The cycling ability of the optimized electrolyte N1116-NTf2/EC:DEC (40/60% (v/v)) + 1 M LiNTf2 has been investigated at a titanate oxide (Li4Ti5O12) and a cobalt oxide (LixCoO2) electrodes. Cycling the positive and the negative electrodes was conducted successfully with a high capacity and without any significant fading.  相似文献   

7.
In order to enhance the ionic conductivity of polyethylene oxide (PEO)-KOH based alkaline polymer electrolytes, three types of nano-powders, i.e., TiO2, β-Al2O3 and SiO2 were added to PEO-KOH complex, respectively, and the corresponding composite alkaline polymer electrolytes were prepared. The experimental results showed that the prepared polymer electrolytes exhibited higher ionic conductivities at room temperature, typically 10−3 S cm−1 as measured by ac impedance method, and good electrochemical stability. The electrochemical stability window of ca. 1.6 V was determined by cyclic voltammetry with stainless steel blocking electrodes. The influence of the film composition such as KOH, H2O and nano-additives on ion conductivity was investigated and explained. The temperature dependence of conductivity was also determined. In addition, polyvinyl alcohol (PVA)-sodium carboxymethyl cellulose (CMC)-KOH alkaline polymer electrolytes were obtained using solvent casting method. The properties of the polymer electrolytes were characterized by ac impedance, cyclic voltammetry and differential thermal analysis methods. The ionic conductivity of the prepared PVA-CMC-KOH-H2O electrolytes can reach the order of 10−2 S cm−1. The effect of CMC addition on the alkaline polymer electrolytes was also explained. The experimental results demonstrated that the PVA-CMC-KOH-H2O polymer electrolyte could be used in Ni/MH battery.  相似文献   

8.
In the present work, novel gel-based composite polymer electrolytes for lithium batteries were prepared by introducing a hierarchical mesoporous silica network to the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based gel electrolytes. As compared with the PVDF-HFP-based gel electrolytes with/without conventional nano-sized silica fillers, the novel electrolytes have shown more homogeneous microstructure, higher ionic conductivity and better mechanical stability, which could be caused by the strong silica network and the effective interactions among the polymer, the liquid electrolytes and the silica. Moreover, the cell with this kind of electrolytes could achieve a discharge capacity as much as 150 mAh g−1 at room temperature (LiCoO2 as the cathode active material), with high Coulomb efficiency.  相似文献   

9.
A gel polymer electrolyte (GPE) is prepared from polymethylmethacrylate interpenetrating polymer network, benzoyl peroxide, and 1.1 M LiPF6/EC-DEC (1:1 vol.%). The LiCoO2/graphite cells are prepared and their electrochemical properties were evaluated at various current densities and temperatures. The viscosity of the precursor containing 5 vol.% curable mixture is around 4.6 mPa s. The ionic conductivity of the GPE at 20 °C is around 5.8×10−3 S cm−1. The GPE has good electrochemical stability up to 4.8 V vs. Li/Li+. The capacity of the cell at 1.0C rate is 82% of the discharge capacity at 0.2C rate. The capacity of the cell at −10 °C is 86% of the discharge capacity at 20 °C. Discharge capacity of the cell with GPE is stable with charge-discharge cycling.  相似文献   

10.
This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 × 10−3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF6-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (Ri) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO2) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 °C.  相似文献   

11.
Various ionic liquids (ILs) were prepared via metathesis reaction from two kinds of 1-(2-hydroxyethyl)-3-methyl imidazolium ([HEMIm]+) and N-(2-hydroxyethyl)-N-methyl morphorinium ([HEMMor]+) cations and three kinds of tetrafluoroborate ([BF4]), bis(trifluoromethanesulfonyl)imide ([TFSI]) and hexafluorophosphate ([PF6]) anions. All the [HEMIm]+ derivatives were in a liquid state at room temperature. In particular, [HEMIm][BF4] and [HEMIm][TFSI] showed no possible melting point from −150 °C to 200 °C by DSC analysis, and their high thermal stability until 380-400 °C was verified by TGA analysis. Also, their stable electrochemical property (electrochemical window of more than 6.0 V) and high ionic conductivity (0.002-0.004 S cm−1) further confirm that the suggested ILs are potential electrolytes for use in electrochemical devices. Simultaneously, the [HEMMor]+ derivatives have practical value in electrolyte applications because of their easy synthesis procedures, cheap morpholinium cation sources and possibilities of high Li+ mobility by oxygen group in the morpholinium cation. However, [HEMMor]+ derivatives showing high viscosity usually had lower ionic conductivities than [HEMIm]+ derivatives.  相似文献   

12.
A gel polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and fully cyanoethylated cellulose derivative (DH-4-CN) was prepared and characterized. Thermal, mechanical, swelling, liquid electrolyte retention and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, were investigated using thermogravimetric analysis, electrochemical impedance spectroscopy, linear sweep voltammetry, and scanning electron microscopy. The results showed that the addition of DH-4-CN could obviously improve the conductivity of PVDF-HFP based electrolyte. The maximum ionic conductivity of 4.36 mS cm−1 at 20 °C can be obtained for PVDF-HFP/DH-4-CN 14:1 in the presence of 1 M LiPF6 in EC and DMC (1:1, w/w). The dry blend membranes exhibit excellent thermal behavior. All the blend electrolytes are electrochemically stable up to about 4.8 V vs. Li/Li+ for all compositions. The results reveal that the composite polymer electrolyte qualifies as a potential application in lithium-ion battery.  相似文献   

13.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

14.
The acrylonitrile (AN)-methoxy polyethylene glycol (350) monoacrylate (MPGA)-lithium acrylate (LiAc) copolymers (PAMGLiAc) was synthesized by emulsion polymerization. Phase inversion technique was used to prepare the PAMGLiAc microporous membrane. The gel polymer electrolytes (GPEs) with the PAMGLiAc were obtained by the copolymer microporous membrane soaking liquid electrolyte. The component and structure of the PAMGLiAc were characterized by IR, NMR and TGA/DSC measurement. The electrochemical characteristics of the PAMGLiAc gel electrolytes were investigated in terms of different composition. The ionic conductivity exceeded 2.0 × 10−3 S/cm at ambient temperature, and this system also showed good mechanical properties and a sufficient electrochemical stability with a decomposition voltage as much as 5 V vs. Li to allow far wider operation in the rechargeable lithium-ion polymer batteries.  相似文献   

15.
New functionalized ionic liquids (ILs), comprised of multi-methoxyethyl substituted quaternary ammonium cations (i.e. [N(CH2CH2OCH3)4−n(R)n]+; n = 1, R = CH3OCH2CH2; n = 1, R = CH3, CH2CH3; n = 2, R = CH3CH2), and two representative perfluorinated sulfonimide anions (i.e. bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)), were prepared. Their fundamental properties, including phase transition, thermal stability, viscosity, density, specific conductivity and electrochemical window, were extensively characterized. These multi-ether functionalized ionic liquids exhibit good capability of dissolving lithium salts. Their binary electrolytes containing high concentration of the corresponding lithium salt ([Li+] >1.6 mol kg−1) show Li+ ion transference number (tLi+) as high as 0.6-0.7. Their electrochemical stability allows Li deposition/stripping realized at room temperature. The desired properties of these multi-ether functionalized ionic liquids make them potential electrolytes for Li (or Li-ion) batteries.  相似文献   

16.
Polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) and the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) have been prepared and characterized by different techniques. Coordination of the IL by the polymer occurs mainly in the amorphous phase. This finding was correlated with previous theoretical investigations of a similar model for polymer electrolytes based on poly(ethylene oxide), PEO, and IL. It has been obtained ionic conductivity σ ∼ 10−3 S cm−1 for the polymer electrolyte with 35 wt% of IL at 100 °C. The same order of magnitude for σ was obtained by molecular dynamics simulation of PEO/IL. This work demonstrates consistency between experimental and theoretical results for polymer electrolytes containing ionic liquids.  相似文献   

17.
Y.W. Chen-Yang  Y.T. Chen  W.T. Lin 《Polymer》2009,50(13):2856-2809
In this study, an organoclay, ALA-MMT, was prepared by the ionic exchange reaction of montmorillonite (MMT) with 12-aminododecanoic acid (ALA). ALA-MMT was then used as a filler to prepare a series of composite polymer electrolytes based on polyacrylonitrile (PAN) and LiClO4. The effect of the addition of ALA-MMT on the properties of the composite polymer electrolytes (CPEs) was investigated by XRD, FT-IR, DSC, tensile strength, AC impedance, and cyclic voltammetry measurements. It was found that the ALA-MMT particles were well dispersed in the CPEs. Owing to the incorporation of ALA-MMT, a higher fraction of the free anions was obtained, indicating that the lithium salt dissolved in the PAN matrix more effectively for the CPE than in the PAN/LiClO4 polymer electrolyte. Moreover, the glass-transition temperature was reduced, benefiting the ion transport. The best ionic conductivity at room temperature was obtained from the CPE with 7 wt% of the modified clay and 0.6 M LiClO4 per PAN repeat unit (CPE-7) and was more than seven times higher than that from the corresponding PAN/LiClO4 polymer electrolyte (CPE-0). The mechanical property and the cation transference number, t+, of CPE-7 are largely increased compared to that of CPE-0. Besides, the CPEs were electrochemically stabilized up to 4.75 V and the corresponding cell exhibited excellent electrochemical stability and cyclability over the potential range between 0 V and 4.0 V vs. Li/Li+.  相似文献   

18.
Several 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (alkyl-DMimTFSI) were prepared by changing carbon chain lengths and configuration of the alkyl group, and their electrochemical properties and compatibility with Li/LiFePO4 battery electrodes were investigated in detail. Experiments indicated the type of ionic liquid has a wide electrochemical window (−0.16 to 5.2 V vs. Li+/Li) and are theoretically feasible as an electrolyte for batteries with metallic lithium as anode. Addition of vinylene carbonate (VC) improves the compatibility of alkyl-DMimTFSI-based electrolytes towards lithium anode and LiFePO4 cathode, and enhanced the formation of solid electrolyte interface to protect lithium anodes from corrosion. The electrochemical properties of the ionic liquids obviously depend on carbon chain length and configuration of the alkyl, including ionic conductivity, viscosity, and charge/discharge capacity etc. Among five alkyl-DMimTFSI-LiTFSI-VC electrolytes, Li/LiFePO4 battery with the electrolyte-based on amyl-DMimTFSI shows best charge/discharge capacity and reversibility due to relatively high conductivity and low viscosity, its initial discharge capacity is about 152.6 mAh g−1, which the value is near to theoretical specific capacity (170 mAh g−1). Although the battery with electrolyte-based isooctyl-DMimTFSI has lowest initial discharge capacity (8.1 mAh g−1) due to relatively poor conductivity and high viscosity, the value will be dramatically added to 129.6 mAh g−1 when 10% propylene carbonate was introduced into the ternary electrolyte as diluent. These results clearly indicates this type of ionic liquids have fine application prospect for lithium batteries as highly safety electrolytes in the future.  相似文献   

19.
In this present paper the influence of viscosity on the ionic dynamics of polymer gel electrolytes prepared by the Pechini polymeric precursor method is investigated by impedance spectroscopy, differential scanning calorimetric (DSC) and NMR techniques. Polymer gel electrolytes are formed by ethylene glycol (EG) and citric acid (CA) and lithium perchlorate. Room temperature conductivity of the order of 2.3 × 10−4 S/cm was obtained for the sample of EG/CA:LiClO4 with lower viscosity (η = 197 cP). The results show that the ionic conductivity of the electrolytes increases for decreasing viscosity. Proton (1H) and Lithium (7Li) NMR lineshapes and spin-lattice relaxation times were measured as a function of temperature and viscosity (197-868 cP). The 7Li relaxation process was found to be dominated by quadrupolar couplings. The activation energy extracted from the 1H and 7Li relaxation data (∼0.23 eV) was found to be independent of the viscosity of the gel electrolyte. The 7Li NMR relaxation results indicate an increase of the lithium ion mobility with decreasing viscosity.  相似文献   

20.
In view of the safety concerns and the requirements of high energy density lithium batteries, the room temperature ionic liquids (RTILs) are being investigated as suitable candidates to substitute organic electrolytes in polymer electrolytes. In this article, we report synthesis, characterization, and electrochemical properties of nanocomposite polymer electrolytes (NCPEs) comprising of a RTIL [n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)] and nano-sized ceramic fillers (SiO2, Al2O3 or BaTiO3) hosted in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] membranes. The addition of BMITFSI and ceramic fillers in polymer electrolytes results in high ionic conductivity at room temperature. The cells prepared with BMITFSI and different NCPEs show good interfacial stability and oxidation stability at >5.5 V with the highest value of 6.0 V for the NCPE incorporating BaTiO3. The cell with the NCPE containing BaTiO3 delivers high initial discharge capacity of 165.8 mA h g−1, which corresponds to 97.5% utilization of active material under the test conditions, and showed the least % capacity fade after prolonged cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号