首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

2.
M. Li  K. Sasaki  D. Su  P. Liu 《Electrochimica acta》2010,55(14):4331-9830
Ternary Pt-Rh-SnO2/C electrocatalysts with the atomic ratio Pt:Rh:Sn = 3:1:x, where x varies from 2 to 6, were synthesized using the modified polyol method followed by thermal treatment. Several techniques used to characterize these electrocatalysts showed they were composed of homogeneous PtRh alloy and SnO2, having all three constituents coexisting in single nanoparticles with the average particle size around 1.4 nm and a narrow size distribution. While all the electrocatalysts investigated exhibited high catalytic activity for ethanol oxidation, the most active one had the composition with the Pt:Rh:Sn = 3:1:4 atomic ratio. These ternary-electrocatalysts effectively split the C-C bond in ethanol at room temperature in acidic solutions, which is verified using the in situ IRRAS technique.  相似文献   

3.
The structure, surface composition and activity/selectivity for ethanol oxidation of carbon supported Pt alloy catalysts with different composition and catalyst loading, which were synthesized via the polyol-route, were investigated and characterized by microscopic/spectroscopic methods (TEM, EDX, XRD) and electrochemical (RDE, on-line DEMS) measurements under well-defined transport and diffusion conditions. The performance of the polyol-type Pt/C (20 wt.%), PtRu/C (20, 40 and 60 wt.%), and Pt3Sn/C (20 wt.%) catalysts was compared with that of commercial Pt/C, PtRu/C and Pt3Sn/C (E-Tek) catalysts. The metal particle sizes of the polyol-type catalysts are significantly smaller than those of the corresponding commercial catalysts, nevertheless both the mass specific activities and, more pronounced, the inherent, active surface area specific activities are lower than those of the commercial catalysts, which is related to the lower degree of alloy formation in the polyol-type catalysts. For all catalysts, incomplete ethanol oxidation to C2 products (acetaldehyde and acetic acid) prevails under conditions of this study, CO2 formation contributes by ≤1% for potentiostatic reaction conditions. The lower activity of the polyol-type catalysts is mainly due to the lower activity for acetaldehyde formation. Implications and further strategies for fuel cell applications are discussed.  相似文献   

4.
Carbon supported Pt/Pb and Pt/Ru/Pb catalysts were prepared by deposition of Pb on commercial Pt and Pt/Ru catalysts, respectively. It was found that after addition of Pb, the catalytic activity of Pt and Pt/Ru for ethanol oxidation increased greatly, especially at high potentials. It has been shown that decorating commercial Pt and Pt/Ru catalysts with Pb is a simple and effective way to prepare carbon supported Pt/Pb and Pt/Ru/Pb catalysts for ethanol oxidation. The physical properties of the catalysts were characterized by XRD, EDX and TEM, and it was found that no Pt/Pb and Pt/Ru/Pb alloys were formed.  相似文献   

5.
SnO2-carbon nanotubes (CNTs) composites were prepared by sol-gel method, and characterized by scanning electron microscopy and X-ray diffraction. Due to high stability in diluted acidic solution, SnO2-CNTs composites were selected as the catalyst support and second catalyst for ethanol electrooxidation. The electrocatalytic properties of the SnO2-CNTs supported platinum (Pt) catalyst (Pt/SnO2-CNTs) for ethanol oxidation have been investigated by typical electrochemical methods. Under the same mass loading of Pt, the Pt/SnO2-CNTs catalyst shows higher electrocatalytic activity and better long-term cycle stability than Pt/SnO2 catalyst. Additionally, the effect of the mass ratio of CNTs to SnO2 on the electrocatalytic activity of the electrode for ethanol oxidation was investigated, and the optimum mass ratio of CNTs to SnO2 in the Pt/SnO2-CNTs catalyst is 1/6.3.  相似文献   

6.
Supported platinum catalysts containing 1.2% Pt loaded on Al2O3 (1.2% Pt/Al2O3) and 1.9% Pt loaded on ZrO2 (1.9% Pt/ZrO2) were prepared by incipient wetness impregnation and sol–gel method, respectively. The activity of these catalysts in the partial oxidation of ethanol (POE) was examined in a fixed-bed reactor in a temperature range between 373 and 473 K. The results indicated that significant ethanol conversion (CEtOH > 50%) was found at the low reaction temperature with a feed ratio of O2/EtOH ratio >0.75. Oxygen molecules introduced in reactant were completely consumed in POE reactions performed. H2, H2O, CO and CO2 were the major products detected. The selectivity of hydrogen (SH2) and CO (SCO) varied significantly with reaction conditions. High selectivity of hydrogen (SH2 > 95%) and low selectivity of CO (SCO  0%) were found from a mild oxidation at TR = 373 K over Pt/ZrO2. However, these two selectivities were drastically deteriorated through oxidation at high TR, high O2/EtOH ratio or over Pt/Al2O3 catalyst.  相似文献   

7.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

8.
In this work we have studied the effect of the addition of Sn to alumina-supported Pt catalysts towards the catalytic performance in CO-PROX reaction. Monometallic Pt and Sn catalysts supported on alumina, and bimetallic Pt–Sn supported on alumina (with Pt/Sn atomic ratios of 1.92, 0.53 and 0.28) was prepared by successive impregnation, with high dispersion of the metal. The addition of Sn to Pt does not substantially increase the activity in CO-PROX at low temperatures; however, the temperature interval where the CO conversion is maximum was significantly increased. The optimum Pt/Sn atomic ratio was found to be 0.53. In a wide operation window with respect to temperature, the catalyst with optimum Pt to Sn ratio shows a maximum CO conversion of 78% for λ = 2 with constant selectivity (about 40%) and with 31%CO yield. In the presence of either CO2 or H2O the performance of Sn promoted catalyst was seen to show improved activity.  相似文献   

9.
10.
Z. Jusys 《Electrochimica acta》2004,49(8):1297-1305
We present a novel dual thin-layer flow cell double-disk electrode design, which due to its high collection efficiency in combination with a reasonable time resolution allows highly sensitive measurements of electro-active species generated during electrochemical reactions on the working electrode. Most important, it allows for rapid changes of the electrolyte during the measurements, which in combination with a thin-film electrode, where an inert glassy carbon substrate is covered by a thin film of carbon-supported noble metal catalyst, makes it particularly useful for kinetic studies on electrocatalytic fuel cell reactions under realistic conditions (continuous reaction, continuous electrolyte flow) and on realistic materials (supported catalysts).The performance of the set-up and its suitability for kinetic studies, in particular for transient experiments involving rapid electrolyte exchange, are demonstrated in potentiodynamic and transient potentiostatic measurements for the oxygen reduction reaction on carbon-supported Pt catalysts and, for comparison, on Pt-free Vulcan carbon supports.  相似文献   

11.
The activity of a carbon supported PtWO3 (PtWO3/C) catalyst in the CO oxidation and CO2 reduction reactions was evaluated in sulfuric acid solution at room temperature.Cyclic voltammetry combined with on-line mass spectrometry shows that the oxidation of both saturated CO adlayer and dissolved CO on PtWO3/C material commences at rather low potentials, ca. 0.18 and 0.12 V vs. RHE, respectively. However, the low-potential process seems to involve only a minor fraction of the CO adlayer, the major part of the adsorbed CO layer being oxidised at the potentials as high as those for pure Pt catalysts—ca. 0.7 V vs. RHE. PtWO3/C material was found to reversibly de-activate upon a prolonged exposure to the CO-saturated solution due to the inhibition of the hydrogen tungsten bronze formation.The reduction of CO2 on PtWO3/C leads to the formation of an adsorbate - presumably CO - on the Pt sites of the catalyst. Although the rate of the adsorbate build-up on PtWO3/C at 0.1 V is lower than that on pure Pt/C, our results indicate that upon a prolonged exposure of the PtWO3/C electrode to a CO2-saturated solution a complete poisoning of the Pt sites with the adsorbate is likely to occur at room temperature.  相似文献   

12.
Low platium loading Pt/C catalyst was prepared by direct Pt-embedded carbon xerogel method. The Pt content of the as-prepared Pt/C is about 4.32 wt% and has a typical polycrystalline phase. Textural and structural characteristics of the catalysts were characterized by XRD, EDS and BET. Pt-embedded in carbon xerogel increases the specific surface area and pore volume of the X-Pt/C during carbon gelation and the carbonization process. Electrochemical characteristics of the catalysts for ethanol electrooxidation were measured. The results indicated that the as-prepared 4.32 wt% Pt/C has higher mass current density in ethanol electrooxidation as compared to the 20 wt% Pt/C. This may be due to the high roughness of the Pt surface that is formed during the carbon gelation and carbonization process.  相似文献   

13.
14.
The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.  相似文献   

15.
Methanol, ethanol and formic acid electrooxidations in acid medium on Pt/C and PtRu/C catalysts were investigated. The catalysts were prepared by a microwave-assisted polyol process. Cyclic voltammetry and chronoamperometry were employed to provide quantitative and qualitative information on the kinetics of methanol, ethanol and formic acid oxidations. The PtRu/C catalyst showed higher anodic current densities than the Pt/C catalyst and the addition of Ru reduced the poisoning effect.  相似文献   

16.
Pt/尼龙催化剂在硝基苯加氢中的应用   总被引:4,自引:1,他引:4  
薛绿林  高雷 《辽宁化工》2000,29(4):239-241
民了Pt/尼龙催化剂,成功地将其用作硝苯加氢一中成对氨基苯酚的催化剂,同时研究了金属负载量、催化剂还原方法、共催化剂、金属铂结晶颗粒的大小及分布与Pt/尼催化剂的活性和选择性的关系。  相似文献   

17.
Selective CO oxidation in the presence of excess hydrogen was studied over supported Pt catalysts promoted with various transition metal compounds such as Cr, Mn, Fe, Co, Ni, Cu, Zn, and Zr. CO chemisorption, XRD, TPR, and TPO were conducted to characterize active catalysts. Among them, Pt-Ni/γ-Al2O3 showed high CO conversions over wide reaction temperatures. For supported Pt-Ni catalysts, Alumina was superior to TiO2 and ZrO2 as a support. The catalytic activity at low temperatures increased with increasing the molar ratio of Ni/Pt. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Ni and Pt was determined to be 5. This Pt-Ni/γ A12O3 showed no decrease in CO conversion and CO2 selectivity for the selective CO oxidation in the presence of 2 vol% H2O and 20 vol% CO2. The bimetallic phase of Pt-Ni seems to give rise to stable activity with high CO2 selectivity in selective oxidation of CO in H2-rich stream.  相似文献   

18.
Pt/Al_2O_3催化剂失活分析及再生处理   总被引:4,自引:1,他引:4  
介绍了苯加氢制环己烷过程中的Pt/Al2 O3 催化剂酸中心的产生、积碳、机械杂质的覆盖及水、硫、一氧化碳等对催化剂活性、选择性、寿命的影响 ,以及催化剂失活后的再生方法  相似文献   

19.
Sakae Takenaka 《Fuel》2004,83(1):47-57
Methane decomposition into H2 and carbon nanofibers at 823 K and subsequent gasification of the carbon nanofibers with CO2 into CO at 923 K were performed over supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/Al2O3). Supported Ni catalysts were deactivated for CH4 decomposition with time on stream due to deposition of a large amount of carbon nanofibers. Subsequent contact of CO2 with carbon nanofibers on the deactivated catalysts resulted in the formation of CO with a conversion of the carbons higher than 95%. In addition, gasification with CO2 regenerated the activity of supported Ni catalysts for CH4 decomposition, indicating that H2 formation through CH4 decomposition and CO formation through gasification with CO2 could be carried out repeatedly. Conversions of carbon nanofibers into CO were kept higher than 95% in the repeated gasification over all the catalysts, while change in the catalytic activity for CH4 decomposition with the repeated cycles depended on the kind of catalytic supports. Catalytic activity of Ni/SiO2 for CH4 decomposition was high at early cycles, however, the activity decreased gradually with the repeated cycles. On the other hand, Ni/TiO2 and Ni/Al2O3 showed high activity for CH4 decomposition and the activity was kept high during the repeated cycles. These changes of catalytic activities for CH4 decomposition could be explained by changes in particle sizes of Ni metal, i.e. Ni metal particles in Ni/SiO2 aggregated into ones larger than 150 nm with the repeated cycles, while the particle sizes of Ni metal in Ni/TiO2 and Ni/Al2O3 remained at an effective range for CH4 decomposition (60-100 nm).  相似文献   

20.
The SSITKA measurements were performed in the steady state of complete methane oxidation on the Pd/Al2O3 and Pt/Al2O3 catalysts. It was found that the number of intermediates and their average life-time on the catalyst surface changes with the increase of reaction temperature. On the Pd/Al2O3 catalyst there is larger number of active centres than on Pt/Al2O3 catalyst which permits the course of methane oxidation at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号