首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-axis milling operations are common in several industries such as aerospace, automotive and die/mold for machining of sculptured surfaces. In these operations, productivity, dimensional tolerance integrity and surface quality are of utmost importance. Part and tool deflections under high cutting forces may result in unacceptable part quality whereas using conservative cutting parameters results in decreased material removal rate. Process models can be used to determine the proper or optimal milling parameters for required quality with higher productivity. The majority of the existing milling models are for 3-axis operations, even the ones for ball-end mills. In this article, a complete geometry and force model are presented for 5-axis milling operations using ball-end mills. The effect of lead and tilt angles on the process geometry, cutter and workpiece engagement limits, scallop height, and milling forces are analyzed in detail. In addition, tool deflections and form errors are also formulated for 5-axis ball-end milling. The use of the model for selection of the process parameters such as lead and tilt angles that result in minimum cutting forces are also demonstrated. The model predictions for cutting forces and tool deflections are compared and verified by experimental results.  相似文献   

2.
MODELING OF 5-AXIS MILLING PROCESSES   总被引:2,自引:0,他引:2  
5-axis milling operations are common in several industries such as aerospace, automotive and die/mold for machining of sculptured surfaces. In these operations, productivity, dimensional tolerance integrity and surface quality are of utmost importance. Part and tool deflections under high cutting forces may result in unacceptable part quality whereas using conservative cutting parameters results in decreased material removal rate. Process models can be used to determine the proper or optimal milling parameters for required quality with higher productivity. The majority of the existing milling models are for 3-axis operations, even the ones for ball-end mills. In this article, a complete geometry and force model are presented for 5-axis milling operations using ball-end mills. The effect of lead and tilt angles on the process geometry, cutter and workpiece engagement limits, scallop height, and milling forces are analyzed in detail. In addition, tool deflections and form errors are also formulated for 5-axis ball-end milling. The use of the model for selection of the process parameters such as lead and tilt angles that result in minimum cutting forces are also demonstrated. The model predictions for cutting forces and tool deflections are compared and verified by experimental results.  相似文献   

3.
Prediction of specific force coefficients from a FEM cutting model   总被引:1,自引:1,他引:0  
This paper presents a method to obtain the specific cutting coefficients needed to predict the milling forces using a mechanistic model of the process. The specific coefficients depend on the tool–material couple and the geometry of the tool, usually being calculated from a series of experimental tests. In this case, the experimental work is substituted for virtual experiments, carried out using a finite element method model of the cutting process. Through this approach, the main drawbacks of both types of models are solved; it is possible to simulate end milling operations with complex tool geometries using fast mechanistic models and replacing the experimental work by virtual machining, a more general and cheap way to do it. This methodology has been validated for end milling operations in AISI 4340 steel.  相似文献   

4.
In high-speed dry milling of thin-walled parts, the cutter-workpiece temperature rises asymptotically with cutting speed, causing excessive cutter tooth wear and workpiece thermal expansion, which in turn reduces the cutter life and produces dimensional and geometrical variabilities in the machined part. Therefore, a basic understanding of the thermal aspect of machining and the effecting parameters is essential for achieving better part quality with improved productivity. This paper presents a transient milling simulation model to assist manufacturing engineers in gaining in-depth understanding of the thermomechanical aspects of machining and their influence on resulted part quality. Based on the finite-element method approach, the model can predict transient temperature distributions and resulted elastic-plastic deformations induced during the milling of 2.5D prismatic parts comprising features like slots, steps, pockets, etc. The advantages of the proposed model over previous works are that it (1) performs feature-based machining simulation considering transient thermomechanical loading conditions; (2) allows modeling the effects of coolant on convective heat transfer rate; and (3) considers the nonlinear behavior of the workpiece due to its changing geometry, inelastic material properties, and flexible fixture–workpiece contacts. The prediction accuracy of the model was validated with experimental results obtained during the course of the research work. A good agreement between the numerical and experimental results was found for different test cases with varying part geometries and machining conditions.  相似文献   

5.
自由曲面五轴加工刀具轨迹规划技术的研究进展   总被引:12,自引:0,他引:12  
利用五坐标设备进行自由曲面的数控加工是提高加工质量和加工效率的有效途径,自由曲面形状和五坐标机床运动的复杂性导致其刀具轨迹规划技术十分困难。针对自由曲面五坐标端铣加工、侧铣加工以及碰撞干涉分析中的关键技术,综述了近年来自由曲面五坐标数控加工领域刀具轨迹规划技术的研究进展和现状。结合自由曲面数控加工的工程实用性要求,分析了当前研究中存在的不足,指出目前的研究成果在通用性、稳定性和有效性方面尚不能完全满足工程应用,认为自由曲面五坐标数控加工刀具轨迹规划技术的研究应从三维的角度出发,在更为广域的刀具影响空间研究刀具同自由曲面之间的几何啮合关系,同时需要考虑机床的运动学和动力学特性以实现五坐标机床的高速和高效运行。  相似文献   

6.
Mill turning is a process applied in the milling of a curved surface while the workpiece rotates around its center. Depending on the eccentricity of the tool, when a flat-end mill tool performs a curved trajectory perpendicular to the rotation axis of the tool, its bottom part is engaged in removing material. In order to optimize the process, the cutting force needs to be predicted. Hence, in this work, an approach to simulating the cutting force in mill turning is presented. The case of non-eccentricity of the tool is considered. The undeformed chip geometry is modeling as a function of the tool engagement considering the process kinematics. Experiments were conducted on a five-axis machining center enabling the measurement of the XY and Z components of the cutting forces. In order to verify the influence of the bottom part of the tool on the cutting forces, experiments were carried out using three different cutting depths. Numerical cutting simulations and experimental test results are compared to validate the proposed approach.  相似文献   

7.
A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.  相似文献   

8.
This paper deals with a predictive model of kinematical performance in 5-axis milling within the context of high-speed machining. Indeed, 5-axis high-speed milling makes it possible to improve quality and productivity thanks to the degrees of freedom brought by the tool axis orientation. The tool axis orientation can be set efficiently in terms of productivity by considering kinematical constraints resulting from the set machine tool/NC unit. The capacities of each axis as well as NC unit functions can be expressed as limiting constraints. The proposed model relies on each axis displacement in the joint space of the machine tool and predicts the most limiting axis for each trajectory segment. Thus, the calculation of the tool feedrate can be performed, highlighting zones for which the programmed feedrate is not reached. This constitutes as an indicator for trajectory optimization. The efficiency of the model is illustrated through examples. Finally, the model could be used for optimizing process planning.  相似文献   

9.
The repair of worn parts is of great interest for aerospace industries to extend the life cycle of aerospace parts. Due to the distortion and defects of a worn part, the nominal CAD model from the design stage is no longer suitable for the use of the repairing process, which causes the main problem for precisely repairing complex components. In this paper, an integrated repair solution adaptive to worn component geometry is proposed and developed for aerospace industries. Based on the scanned repair model with different defects, a reverse engineering(RE)-based geometry reconstruction method is developed for the normal model creation of a worn component. This is a crucial procedure for precisely repairing individual component. Based on the nominal model reconstructed, tool paths used for the build-up and machining process can then be generated to implement the repairing work. In this study, repairing complex blades from aerospace engines were considered and practised. To verify the proposed repair solution, a curved blade to be repaired was used in the experiment and the blade tip model was reconstructed for the subsequent repairing process. Based on the model, the blade was built-up through a laser cladding process and then machined back to size through isoparametric machining strategy on a 5-axis Hermle machine tool. Finally, the experimental results are given and analysed.  相似文献   

10.
一种带缘头避让的叶片高效螺旋加工方法   总被引:2,自引:0,他引:2  
针对航空发动机叶片螺旋铣加工中前后缘处刀位点密集、刀轴矢量变化剧烈而导致的过切等问题,本文提出了一种带缘头避让的叶片高效螺旋加工方法。在叶片螺旋加工中,只有叶盆和叶背曲面参与切削,缘头曲面从螺旋加工过程剥离并对其实施单独处理。为实现螺旋加工中缘头部分的避让,本文利用三次非均匀B样条曲线给出了避让曲线的构造方法。切削实验结果表明,本文方法可有效提高航空发动机叶片的加工效率,并能有效保证缘头处的加工质量。  相似文献   

11.
基于正向杜邦指标线的五坐标侧铣加工   总被引:2,自引:0,他引:2  
为实现叶轮类零件的多坐标侧铣加工,通过引入正向杜邦指标线,利用鼓锥形刀对自由曲面的五坐标侧铣加工进行研究。针对具有严格凸切削刃的侧铣加工刀具,提出不发生局部干涉的充要条件是切触点处刀具曲面的正向杜邦指标线位于被加工曲面的正向杜邦指标线之内。给出利用鼓锥形刀侧铣加工自由曲面时实施干涉检查的判断准则以及消除干涉的修正方法,推导出具有严格凸切削刃的刀具在给定的残留高度下侧铣加工带宽的计算方法。在此基础上,利用等残留高度法实现鼓锥形刀侧铣加工自由曲面无干涉刀具轨迹的生成。算例表明,在相同残留高度下,鼓锥形刀侧铣较之球头刀加工效率提高37.44%,说明侧铣加工是提高切削效率和加工质量的一种有效途径。  相似文献   

12.
介绍了一种多功能车铣镗复合专用机床结构,通过机床布局的结合方式变换,在一次装夹中完成对回转体零件车铣加工和支架零件铣镗加工的效果,做到结合方便、一机多用,实现机械加工的车铣复合、铣镗复合加工的综合功能。  相似文献   

13.
车铣复合加工技术能实现以铣代车或磨高速切削回转体零件。基于此技术的微细切削无论是在生产率还是在加工表面质量上,较其它加工技术而言,更适合于微细轴类零件和具有复杂型面的微小型零件的加工。通过微细车铣切削微细丝杠试验,从切削用量和加工质量及刀具磨损方面研究了车铣复合加工技术在解决微细丝杠加工中的应用。结果表明,基于车铣复合加工技术能够实现微细丝杠的高速切削。该技术非常适合于微细丝杠零件加工。  相似文献   

14.
为了降低复杂曲面类零部件加工的刀具路径,减小刀具路径条数,提高加工效率,提出了一种新的复杂曲面环形刀五轴端铣加工刀具轨迹优化方法。在局部可铣性基础上对刀轴矢量角进行自适应优化,采用新型加工带宽计算方法——等残留高度算法,给出了等残留高度算法的刀具轨迹生成具体步骤。仿真结果表明:与传统等残留高速算法相比,刀具轨迹优化算法的刀具路径更短、条数更少,能够有效提高复杂曲面加工效率。  相似文献   

15.
Mechanistic models of the milling process must calculate the chip geometry and the cutter edge contact length in order to predict milling forces accurately. This task becomes increasingly difficult for the machining of three dimensional parts using complex tool geometry, such as bull nose cutters. In this paper, a mechanistic model of the milling process based on an adaptive and local depth buffer of the computer graphics card is compared to a traditional simulation method. Results are compared using a 3-axis wedge shaped cut – a tool path with a known chip geometry – in order to accommodate the traditional method. Effects of cutter nose radius on the cutting and edge forces are considered. It is verified that there is little difference (1.4% at most) in the predicted force values of the two methods, thereby validating the adaptive depth buffer approach. The numerical simulations are also verified using experimental cutting tests of aluminium, and found to agree closely (within 12%).  相似文献   

16.
The process chain of product regeneration includes the removal of excess weld material, which is called re-contouring. Like all machining processes, re-contouring influences the surface integrity and therefore the functional performance of the regenerated parts. One important aspect of surface integrity is the surface topography, especially for blades in turbine engines due to the flow losses. This paper investigates the fundamental influence of cutting conditions, tool geometry and weld shape on the surface topography after 5-axis ball nose end milling of welded Ti-6Al-4V parts. It is shown by experiment and simulation that apart from the cutting parameters also the chipping of the cutting edge and the tool runout highly influence the surface topography. The size of the weld and the tool compliance primarily influence the tool deflection and the appearance of chatter vibrations.  相似文献   

17.
The geometry of rotary aircraft engine components is usually defined by thin mechanical elements and complex surfaces that are only achievable by 5-axis machining due to either limited access or the design itself. Such thin-walled characteristics make these components susceptible to vibrations while machining and usually require careful manipulation of the toolpath parameters to minimize cutting forces and vibration. Moreover, the tool suppliers’ approach leans towards the feature-build design of cutter geometry to increase the productivity and quality of a machined surface. Some examples of those recent improvements for rotary aircraft engine components are barrel-shaped tools that attempt to increase the contact radius on the tool-part interface to minimize step-over while conserving the scallop height to meet roughness tolerances. This research aims to fill a gap in the current literature by proposing a stability model for barrel-shaped tools. Stability contour maps make use of a mechanistic dynamic force model for barrel-shaped tools. The force model is also capable of including tool runout and orientation angles, tilt and lead, as named in most CAM software. By simulating dynamic forces on the time domain, a contour map is presented to address unstable vibrations. Since forced vibrations and surface location error (SLE) may also appear when milling aircraft parts, SLE and surface roughness are also determined. Finally, given the complexity and number of parameters, validation of the stability maps is performed through experimental chatter tests using a thin wall component.  相似文献   

18.
This paper presents a new method of computing constant scallop height tool paths in 5-axis milling on sculptured surfaces. Usually, iso-scallop tool path computation methods are based on approximations. The attempted scallop height is modelled in a given plane to ensure a fast computation of the tool path. We propose a different approach, based on the concept of the machining surface, which ensures a more accurate computation. The machining surface defines the tool path as a surface, which applies in 3- or 5-axis milling with the cutting tools usually used. The machining surface defines a bi-parametric modelling of the locus of a particular point of the tool, and the iso-scallop surface allows to easily find iso-scallop tool centre locations. An implementation of the algorithms is done on a free-form surface with a filleted end mill in 5-axis milling.  相似文献   

19.
螺杆转子的旋风式法曲率包络铣削技术   总被引:4,自引:0,他引:4  
针对石油工业用大型螺杆钻具转子螺旋曲面的数控铣削加工,提出了一种新的旋风式法曲率包络铣削技术。该技术的核心是在每一走刀行程中,实时调整刀具的轴心线绕接触点工件理论曲面外法线向量转动的角度,使铣刀刀尖圆与理论曲面的切触线具有相同的曲率,对理论曲面形成等法曲率的逼近包络。该铣削技术的表面成形精度高,且铣刀切削刃在曲面上的扫描面积大,能显著提高切削效率。在保持加工精度不变的条件下,可大幅度地减少刀具切削  相似文献   

20.
基于UG CAM软件强大的仿真加工及后处理功能,运用5轴数控高速铣削中心完成了某框架零件的加工并生成NC代码程序。通过采用先进的数控设备,不仅使零件获得了较高的加工质量,且降低了零件制造的成本,促进了生产率的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号