首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium and its alloys are finding prime applications in industries due to their unique properties. However, the high cost of machining is one of the limiting factors for their widespread use. Tremendous efforts are being made to improve the existing machining processes, and new processes are being developed to reduce the machining cost in order to increase the titanium market. However, there is no report on the systematic study of the effects of machining variables on output parameters in rotary ultrasonic machining of titanium and its alloys. This paper presents an experimental study on rotary ultrasonic machining of a titanium alloy. The cutting force, material removal rate, and surface roughness (when using rotary ultrasonic machining) of a titanium alloy have been investigated using different machining variables.  相似文献   

2.
Micro-electrical discharge machining (micro-EDM) has become a widely accepted non-traditional material removal process for machining conductive and difficult-to-cut materials effectively and economically. Being a difficult-to-cut material, titanium alloy suffers poor machinability for most cutting processes, especially the drilling of micro-holes using traditional machining methods. Although EDM is suitable for machining titanium alloys, selection of machining parameters for higher machining rate and accuracy is a challenging task in machining micro-holes. In this study, an attempt has been made for simultaneous optimization of the process performances like, metal removal rate, tool wear rate and overcut based on Taguchi methodology. Thus, the optimal micro-EDM process parameter settings have been found out for a set of desired performances. The process parameters considered in the study were pulse-on time, frequency, voltage and current while tungsten carbide electrode was used as a tool. Verification experiments have been carried out and the results have been provided to illustrate the effectiveness of this approach.  相似文献   

3.
The Ti-1023 beta alloy titanium is used in aeronautics for the production of structure parts such as landing gear and as most of titanium alloys its machinability is poor explained by its physical and mechanical properties. This work presents the machinability results carried out for Ti-1023 milling in using toroidal tool. The aim of this research is the understanding of tool wear mechanisms and to establish the relation between cutting conditions, milling tool geometry, and tool life. A section is also devoted to the chip analysis. The wear modes are also analyzed and defined for different cutting tool geometries where several steps occur. This study is focus on material removal rate, tool life, and volume.  相似文献   

4.
The high strength to density ratio of titanium alloys coupled with excellent corrosion resistance even at elevated temperatures make them ideal for aerospace applications. Moreover, the biocompatibility of titanium also enables its widespread use in the biomedical and food processing industries. However, the difficulty in machining titanium and its alloys along with the high cost of its extraction from ore form presents a major economic constraint. In the context of machining economics, the wear map approach is very useful in identifying the most suitable machining parameters over a feedrate–cutting velocity plane. To date, wear maps have only been prepared for the machining of ferrous alloys. In this article, a review of the machinability of Ti-6Al-4V alloy is presented with emphasis on comparing the wear performance of various tool materials. In addition, a new wear map for Ti-6Al-4V alloy is presented based on unified turning tests using H13A grade carbide inserts. This wear map can be used as a guide in the selection of cutting variables that ensure the least tool wear rates. This article contrasts the occurrence of a safety zone in the case of machining steels to that of an avoidance zone for Ti-6Al-4V alloy.  相似文献   

5.
In machining titanium alloys, due to the low thermal conductivity and high chemical activity of titanium alloys, tool wear is serious and processing efficiency is very low. To avoid the effects of impurities, which were brought by the cutting fluid, the uncoated cemented carbide tool (WC-Co), which was suitable for cutting titanium alloys, was used for the experiments of dry-turning titanium alloy Ti-6Al-4V. A scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectrometer (EDS) was used to analyze tool wear mechanism. Based on analyzing the friction characteristic of tool–chip interface, tool wear mechanism was also studied and a physical evolution model of tool wear was established. The results showed that there existed serious adhesion, diffusion and oxidation at tool–chip interface and increasing cutting speed accelerated their occurrence. The physical evolution of tool wear behavior can reflect the loss process of tool material very well.  相似文献   

6.
Titanium is known as the metal of the future because of its excellent combination of properties such as high specific strength, low thermal conductivity, and high corrosion resistance. There is a critical need for developing and establishing cost-effective methods for the machining of titanium, especially in terms of tool-wear optimization. This paper addresses the application of ultrasonic machining, an impact machining process for the cost-effective machining of commercially pure titanium (ASTM Grade-I) and evaluation of tool-wear rate under the effect of different process parameters. Tool material, abrasive material, slurry concentration, abrasive grit size, and power rating of the ultrasonic machine were included as the input factors in this investigation. The optimal settings of these parameters were determined through experiments planned, conducted, and analyzed using the Taguchi method. The significant parameters contributing most to the variation in tool-wear rate were identified and the results obtained were validated by conducting the confirmation experiments. Thereafter, the outcome of the Taguchi model has been used for developing a micro-model for tool-wear rate (TWR); using Buckingham’s pie theorem. A comparison of the experimental results obtained assists in the validation of the model.  相似文献   

7.
Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Titanium alloys are readily machinable provided the cutting velocity is in the range of 30–60 m/min. To achieve higher productivity, if the cutting velocity is enhanced to 60–120 m/min and beyond, rapid tool wear takes place diminishing the available tool life. Tool wear in machining of titanium alloys is mainly due to high cutting zone temperature localised in the vicinity of the cutting edge and enhanced chemical reactivity of titanium with the tool material. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. High pressure cooling in machining is a very promising technology for enhancing tool life and productivity via appropriate cooling and lubrication. The present investigation is an attempt to study the effects of jet application parameters, i.e., coolant pressure, angle of impingement of the jet, spot distance and nozzle diameter on tool wear and chip morphology and to compare the effectiveness while turning Ti-6Al-4V bars under high pressure cooling with neat oil. Results indicated that at a cutting speed of 85 m/min and feed of 0.2 mm/rev, high pressure cooling provided a tool life of 24 min vis-à-vis 12 min under cryogenic cooling.  相似文献   

8.
This article correlates laboratory-based understanding in machining of titanium alloys with the industry based outputs and finds possible solutions to improve machining efficiency of titanium alloy Ti-6Al-4V. The machining outputs are explained based on different aspects of chip formation mechanism and practical issues faced by industries during titanium machining. This study also analyzed and linked the methods that effectively improve the machinability of titanium alloys. It is found that the deformation mechanism during machining of titanium alloys is complex and causes basic challenges, such as sawtooth chips, high temperature, high stress on cutting tool, high tool wear and undercut parts. These challenges are correlated and affected by each other. Sawtooth chips cause variation in cutting forces which results in high cyclic stress on cutting tools. On the other hand, low thermal conductivity of titanium alloy causes high temperature. These cause a favorable environment for high tool wear. Thus, improvements in machining titanium alloy depend mainly on overcoming the complexities associated with the inherent properties of this alloy. Vibration analysis kit, high pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid machining and, use of high conductive cutting tool and tool holders improve the machinability of titanium alloy.  相似文献   

9.
Analysis on profile accuracy for ultrasonic machining of alumina ceramics   总被引:1,自引:1,他引:0  
Ultrasonic machining (USM) is a mechanical material removal process which has great potential for machining hard and brittle materials such as ceramics, semiconductors, glasses, etc. The accuracy of the job profile generated by USM can be improved by optimal control of the process parameters. This paper presents the study on the influences of ultrasonic machining process parameters such as abrasive grit size, slurry concentration, power rating, tool feed rate and slurry flow rate on generated hexagonal hole profile. The angular deviations at corner angles, dimensional deviations across flat surfaces and dimensional deviation across corners of the hexagonal hole profile have been studied. Based on experimental results, the influences of abrasive grit size, slurry concentration, power rating and tool feed rate were analysed. From the analysis of parametric influences based on various test results, the best parametric combination was found as grit number of 600, slurry concentration of 30 %, power rating of 50 % and feed rate of 1.08 mm/min for achieving better profile accuracy during machining of Al2O3 ceramics. The experimental investigations carried out for determining the influence of USM process parameters will provide effective guideline to select parametric settings for achieving desired job profile accuracy on non-circular holes during ultrasonic drilling of alumina.  相似文献   

10.
难加工材料钛合金在采用传统铣削方式时,随着切削速度的增加,切削力和切削温度都迅速增加,使得切削条件恶化并加速刀具磨损,从而导致刀具过早失效。将超声椭圆振动加工技术引入到高速铣削中,进行了钛合金高速旋转超声椭圆振动侧铣削试验。从切屑特征以及刀具后刀面磨损两个方面研究了高速超声椭圆振动铣削参数匹配对钛合金加工的影响。首先基于高速超声椭圆振动铣削过程中刀具-工件的运动学特点推导出高速超声椭圆振动铣削加工参数与振动参数间的匹配关系,然后利用本实验室自行研制的超声椭圆振动铣削装置进行了不同参数匹配关系下的验证性切削试验。试验结果表明:合理的参数匹配使得超声椭圆振动铣削在高速条件下依然能够实现分离型断续切削加工。相比普通铣削加工,分离型的高速超声椭圆振动铣削能够获得更加微细的切屑,切削热能够被及时地带走;良好的切削条件使得刀具的后刀面磨损均匀而缓慢,从而延长刀具的使用寿命;高速超声椭圆振动铣削能够有效地提高生产效率。  相似文献   

11.
Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM) process comes into existence as a superior alternative to the conventional machining of nickel alloys. The processing of these alloys using RUM needs attention. This article details the multi-response optimization in RUM of nickel alloy using the desirability concept. The present work is carried out with two shapes of the tool: (i) Plain tool and (ii) lateral slotted tool. During RUM, the process parameters—power rating tool rotation, abrasive diamond grit size and feed rate are varied. Compared with the plain tool, the lateral slotted tool shows the more efficient machining rate (MR) with less tool wear (TW). The micro-graphs disclose the mechanism of MR and TW during RUM.  相似文献   

12.
Micro ultrasonic machining (micro-USM) is an unconventional micromachining technology that has capability to fabricate high aspect ratio micro-holes, intricate shapes and features on various hard and brittle materials. The material removal in USM is based on brittle fracture of work materials. The mechanical properties and fracture behaviour are different for varied hard and brittle materials, which would make a big difference in the processing capability of micro-USM. To study the processing capability of USM and exploit its potential, the material removal of work materials, wear of abrasive particles and wear of machining tools in USM of three typical hard and brittle materials including float glass, alumina, and silicon carbide were investigated in this work. Both smoothed particle hydrodynamics (SPH) simulations and verification experiments were conducted. The material removal rate is found to decrease in the order of glass, alumina, and silicon carbide, which can be well explained by the simulation results that cracking of glass is faster and larger compared to the other materials. Correspondingly, the tool wear rate also dropped significantly thanks to the faster material removal, and a formation of concavity on the tool tip center due to intensive wear was prevented. The SPH model is proved useful for studying USM of different hard and brittle materials, and capable of predicting the machining performance.  相似文献   

13.
The aim of the article is to present new developments in microultrasonic machining concerning design and manufacture of a complete acoustic system optimized for ultraprecise processing on 2-in. wafer and examples of microstructures produced at FEMTO-ST institute, particularly in piezoelectric materials. The potentialities and the limitations of the ultrasonic machining technique are discussed. The choice and the dimensions of the material for the acoustic transducer were defined through finite element modeling. Other parameters affecting the machining process such as static load of the tool, vibration amplitude, grain material and size of the abrasive slurry, and workpiece characteristics were hierarchized experimentally in order to increase machining quality (surface state, precision) and minimize tool wear.  相似文献   

14.
In this study, the commercial finite element software FORGE2005®, able to solve complex thermo-mechanical problems is used to model titanium alloy dry machining. One of the main machining characteristics of titanium alloys is to produce a special chip morphology named “saw-tooth chip” or serrated chip for a wide range of cutting speeds and feeds. The mechanism of saw-tooth chip formation is still not completely understood. Among the two theories about its formation, this study assumes that chip segmentation is only induced by adiabatic shear band formation and thus no material failure occurs in the primary shear zone. Based on the assumption of material strain softening, a new material law was developed. The aim of this study is to analyze the newly developed model's capacity to correctly simulate the machining process. The model validation is based on the comparison of experimental and simulated results, such as chip formation, global chip morphology, cutting forces and geometrical chip characteristics. A good correlation was found between the experimental and numerical results, especially for cutting speeds generating low tool wear.  相似文献   

15.
Titanium alloys are known as difficult-to-machine materials. The problems of machining titanium are many folds which depend on types of titanium alloys. This paper investigates the underlying mechanisms of basic challenges, such as variation of chip thickness, high heat stress, high pressure loads, springback, and residual stress based on the available literature. These are responsible for higher tool wear and worse machined surface integrity. In addition, many cutting tool materials are inapt for machining titanium alloys as those materials are chemically reactive to titanium alloys under machining conditions. To address these problems, latest techniques such as application of high pressure coolant, cryogenic cooling, tap testing, thermally enhanced machining, hybrid machining, and use of high conductive cutting tool and tool holder have also been discussed and correlated. It seems that all the solutions are not yet well accepted in the industrial domain; further advancement in those fields are required to reduce the machining cost of titanium alloys.  相似文献   

16.
Free abrasive wire saw machining of ceramics   总被引:1,自引:1,他引:0  
Currently, many kinds of ceramics are used in advanced industrial fields due to their superior mechanical properties, such as thermal, wear, corrosion resistance, and lightweight features. Wire saw machining ceramic (Al2O3) was investigated by ultrasonic vibration in this study. Taguchi approach is a powerful design tool for high-quality systems. Material removal rate, wafer surface roughness, steel wire wear, kerf width, and flatness during machining ceramic were selected as quality character factors to optimize the machining parameters (swinging angle, concentration, mixed grain and direction of ultrasonic vibration) to get the larger-the-better (material removal rate) and the smaller-the-better (wafer surface roughness, steel wire wear, kerf width and flatness) machining characteristics by Taguchi method. The results indicated that wire swinging produces a higher material removal rate and good wafer surface roughness. Ultrasonic vibration improved material removal rate, without affecting the flatness under different machining conditions. Experimental results show that the optimal wire saw machining parameters based on grey relational analysis can be determined effectively and material removal rate increases from 2.972 to 3.324 mm2/min, wafer surface roughness decreases from 0.37 to 0.34 μm, steel wire wear decreases from 0.78 to 0.77 μm, kerf width decreases from 0.352 to 0.350 mm, and flatness decreases from 7.51 to 7.22 μm are observed.  相似文献   

17.
Material removal in ultrasonic drilling is caused by the abrasives in the slurry. As a given charge of abrasive circulates, the mean particle size decreases and the initially sharp cutting edges become dull, reducing the machining rate. This paper discusses the mechanism of wear of the abrasive in ultrasonic drilling; the size of abrasives in the working zone governs machining rate, tool wear and production accuracy of the holes drilled  相似文献   

18.
MODELING THE PHYSICS OF METAL CUTTING IN HIGH-SPEED MACHINING   总被引:3,自引:0,他引:3  
Physical modeling of metal cutting was carried out to provide an understanding and prediction of machining process details. The models are based on finite element analysis (FEA), using a Lagrangian formulation with explicit dynamics. Requirements for material constitutive models are discussed in the context of high-speed machining. Model results address metal cutting characteristics such as segmented chip formation, dynamic cutting forces, unconstrained plastic flow of material during chip formation, and thermomechanical environments of the work-piece and the cutting tool. Examples are presented for aerospace aluminum and titanium alloys. The results are suited for analysis of key process issues of cutting tool performance, including tool geometry, tool sharpness, workpiece material buildup, and tool wear.  相似文献   

19.
Gamma titanium aluminides are intermetallic structural alloys with many advantages like high temperature and oxidation resistance, low density, high specific strength, rigidity, etc. This makes them promising candidates for critical applications where both mechanical and thermal properties are required. Unfortunately, their machinability is demanding, generating low cutting life and poor surface conditions. A deeper knowledge on the machining parameters is essential for a wider application of these heat-resistant light-weight alloys in aircraft and automotive industry. In this paper, the performance of uncoated carbide drills in drilling a gamma titanium aluminide was analysed. The workpiece material was obtained via electron beam melting (EBM) process, a versatile technology for additive manufacturing of complex metal parts from metal powders. EBM is highly appealing in the field of aeroengine components, and it is particularly interesting in processing gamma titanium aluminides. Cutting performances were measured in terms of tool wear, surface roughness, dimensional and geometric errors. The experimental results show strong dependence of tool wear and part quality on cutting parameters, with poor tool life compared with other work materials.  相似文献   

20.
Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina (Al2O3) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02 mm, 27 kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of 2.5 kg/cm2, maximum material removal rate of 18.97 mm3/min was achieved. With mesh number of 600 SiC abrasives and static pressure of 3.0 kg/cm2, best surface roughness of 0.76 pm Ra was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号