首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new machining strategy to realize better dimensional accuracy as well as surface finish. The strategy attempts to keep cutting force and the material removal rate approximately constant and force the tool to move along a so-called Pythagorean-hodograph curve, which is a group of analytic curves with special properties, in a milling operation. In conventional milling operations, a constant feed rate is frequently used. This would invariably lead to higher material removal rates in concave regions and lower material removal rates in convex regions, and affects dimensional accuracy. This work aims to establish the theoretical basis to show how the above-mentioned phenomenon can be predicted. Additionally, chattering is a well-known problem in machining. In this work, it is postulated that keeping certain machining conditions approximately constant would help in reducing chattering during machining. A numerical example is given to illustrate the proposed machining strategy.  相似文献   

2.
Prediction of cutting forces in helical milling process   总被引:6,自引:3,他引:3  
The prediction of cutting forces is important for the planning and optimization of machining process in order to reduce machining damage. Helical milling is a kind of hole-machining technique with a milling tool feeding on a helical path into the workpiece, and thus, both the periphery cutting edges and the bottom cutting edges all participated in the machining process. In order to investigate the characteristics of discontinuous milling resulting in the time varying undeformed chip thickness and cutting forces direction, this paper establishes a novel analytic cutting force model of the helical milling based on the helical milling principle. Dynamic cutting forces are measured and analyzed under different cutting parameters for the titanium alloy (Ti–6Al–4V). Cutting force coefficients are identified and discussed based on the experimental test. Analytical model prediction is compared with experiment testing. It is noted that the analytical results are in good agreement with the experimental data; thus, the established cutting force model can be utilized as an effective tool to predict the change of cutting forces in helical milling process under different cutting conditions.  相似文献   

3.
4.
5.
以外圆车削实验为依据,建立加工过程中刀具振动的非线性动力学模型,并采用数值分析方法,研究切削力中的动态分量对切削颤振的影响.结果表明,随速度变化的切削力分量对颤振幅值影响较小,而且会在短时间内被系统内的结构阻尼所衰减.而与加速度成非线性关系的切削力分量对颤振的影响却很显著,而且加速度系数有临界值存在,当超过这个临界值后,颤振的理论幅度将急剧增大.  相似文献   

6.
Mill turning is a process applied in the milling of a curved surface while the workpiece rotates around its center. Depending on the eccentricity of the tool, when a flat-end mill tool performs a curved trajectory perpendicular to the rotation axis of the tool, its bottom part is engaged in removing material. In order to optimize the process, the cutting force needs to be predicted. Hence, in this work, an approach to simulating the cutting force in mill turning is presented. The case of non-eccentricity of the tool is considered. The undeformed chip geometry is modeling as a function of the tool engagement considering the process kinematics. Experiments were conducted on a five-axis machining center enabling the measurement of the XY and Z components of the cutting forces. In order to verify the influence of the bottom part of the tool on the cutting forces, experiments were carried out using three different cutting depths. Numerical cutting simulations and experimental test results are compared to validate the proposed approach.  相似文献   

7.
Due to complex cutting edge profile of an involute cutter, calculations of chip width and consequently cutting force are quite problematical. This article presents a mechanistic approach in the prediction of cutting force components arising in the course of gear tooth cutting by an involute form cutter. To permit calculation of chip width (and so cutting forces), a discrete model is utilized and cutting force components are then derived using Kienzle approach. Moreover, several experiments are performed under different cutting conditions to prove the effectiveness and accuracy of the used method. The results have revealed that cutting force components can be predicted in form gear tooth cutting with a significant accuracy.  相似文献   

8.
9.
This paper presents the results of a series of experiments performed to examine the validity of a theoretical model for evaluation of cutting forces and machining error in ball end milling of curved surfaces. The experiments are carried out at various cutting conditions, for both contouring and ramping of convex and concave surfaces. A high precision machining center is used in the cutting tests. In contouring, the machining error is measured with an electric micrometer, while in ramping it is measured on a 3-coordinate measuring machine. The results show that in contouring, the cutting force component that influences the machining error decreases with an increase in milling position angle, while in ramping, the two force components that influence the machining error are hardly affected by the milling position angle. Moreover, in contouring, high machining accuracy is achieved in “Up cross-feed, Up cut” and “Down cross-feed, Down cut” modes, while in ramping, high machining accuracy is achieved in “Left cross-feed, Downward cut” and “Right cross-feed, Upward cut” modes. The theoretical and experimental results show reasonably good agreement.  相似文献   

10.
This paper presents a theoretical model by which cutting forces and machining error in ball end milling of curved surfaces can be predicted. The actual trochoidal paths of the cutting edges are considered in the evaluation of the chip geometry. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from force induced tool deflections are calculated at various parts of the machined surface. The influences of various cutting conditions, cutting styles and cutting modes on cutting forces and machining error are investigated. The results of this study show that in contouring, the cutting force component which influences the machining error decreases with increase in milling position angle; while in ramping, the two force components which influence machining error are hardly affected by the milling position angle. It is further seen that in contouring, down cross-feed yields higher accuracy than up cross-feed, while in ramping, right cross-feed yields higher accuracy than left cross-feed. The machining error generally decreases with increase in milling position angle.  相似文献   

11.
A flexible circular saw, which can be used in a novel machining process for high-speed carbon fiber-reinforced plastic (CFRP) plate cutting, was developed. In this process, the saw is deflected like a bowl-like shape. A cross-section of the saw body then forms a circular arc. A curved line can therefore be cut without interference by the bowl-like deflection. In addition, the radius of the cross-section of the saw body can be controlled by adjusting the deflection. This process therefore allows curves to be cut with a varied radius using a single saw. This process can carry out high-speed curved-line cutting with a feed rate of 3 m/min on a CFRP plate. However, it is difficult to cut free-form curves using a flexible circular saw. Therefore, in this research, a new technique that can cut free-form curves using a flexible circular saw was proposed. Then, a cutting test applying the technique was carried out.  相似文献   

12.
This paper presents an analytical method based on the unequal division shear-zone model to study the machining predictive theory. The proposed model only requires workpiece material properties and cutting conditions to predict the cutting forces during the orthogonal cutting process. In the shear zone, the material constitutive relationship is described by Johnson?CCook model, and the material characteristics such as strain rate sensitivity, strain hardening, and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within the primary shear zone. The governing equations of chip flow through the primary shear zone are established by introducing a piecewise power law distribution assumption of the shear strain rate. The cutting forces are calculated for different machining conditions and flow stress data. Prediction results were compared with the orthogonal cutting test data from the available literature and found in reasonable agreement. In addition, an analysis of the deviation from experimental data for the proposed model is performed, the effects of cutting parameters and tool geometry were investigated.  相似文献   

13.
A modification to the knife mounting of a histological microtome is described which can sense the load on the knife when a section is being cut. The performance of this microtome is described in general terms. The variation in force on the knife can be used to give information about the texture of the sample being cut.  相似文献   

14.
股骨头切削手术是一种常见的治疗股骨头坏死的手术方法,具有自动钻削,微创伤等特点的先进手术器械解决方案越来越多的代替传统人工方式,其中,钻头的优化设计和骨骼材料的切削特性的分析方法对该类器械设计方案具有理论和指导意义.研究了一种新型的用于切削手术的微创钻扩系统,在相关实验平台上,研究了机构中钻头的设计参数、轴向力和转速之间的关系,在此基础上建立对钻扩系统的机械设计中的参数设定和优化的实验与理论依据.  相似文献   

15.
微切削加工中切削力的理论与实验   总被引:1,自引:0,他引:1  
微切削过程中的切削力严重影响刀具寿命及零件的加工精度,因此,深入研究微切削过程中的切削力变化规律及影响因素是确定合理的加工参数、加工工艺及提高加工系统性能的基础.本文在考虑刀具钝圆半径存在的条件下,采用轴对称原理建立了微切削力理论公式及微切削模型,实验研究了切削用量、刀具材料及工件材料对切削力的影响,验证了理论分析的正确性.研究结果表明:在切深ap为0.002~0.032 mm,进给量f为0.01~0.20 mm/r,切削速度v为20~120 m/min情况下,切削力Fz的变化范围为100~1030 N,Fy的变化范围为40~700 N;减小刀具钝圆半径会减小刀具后刀面与工件的接触长度,并且会减小切削刃以下部分金属的变形,有利于获得高质量的加工表面;控制切削速度对切削力的影响可以通过控制切削层厚度与刀具钝圆半径的比值来实现,控制切削力比值Fz/Fy则可以通过控制走刀量、切深与刀具钝圆半径的比值来实现.  相似文献   

16.
Micro-end milling is used for manufacturing of complex miniaturized components precisely in wide range of materials. It is important to predict cutting forces accurately as it plays vital role in controlling tool and workpiece deflections as well as tool wear and breakage. The present study attempts to incorporate process characteristics such as edge radius of cutting tool, effective rake and clearance angles, minimum chip thickness, and elastic recovery of work material collectively while predicting cutting forces using mechanistic model. To incorporate these process characteristics effectively, it is proposed to divide cutting zone into two regions: shearing- and ploughing-dominant regions. The methodology estimates cutting forces in each partitioned zone separately and then combines the same to obtain total cutting force at a given cutter rotation angle. The results of proposed model are validated by performing machining experiments over a wide range of cutting conditions. The paper also highlights the importance of incorporating elastic recovery of work material and effective rake and clearance angle while predicting cutting forces. It has been observed that the proposed methodology predicts the magnitude and profile of cutting forces accurately for micro-end milling operation.  相似文献   

17.
A common method of cutting internal threads by means of screw taps is considered. Means of improving screw-tap design are indicated. Recommendations are made regarding the cutting of internal threads in the presence of radial cutting forces.  相似文献   

18.
This paper presents prediction and validation of micro-milling cutting forces of AISI H13 steel at hardnesses between 35 and 60 HRC. The cutting forces are predicted based on an approach considering the full kinematics of the cutting tool including the run-out effect, effects of the cutting velocity and tool geometry, ploughing and chip formation phenomena and the hardness of the AISI H13 steel. A plane strain dynamic thermo-mechanical finite element (FE) model of orthogonal cutting is used to predict the cutting forces where the geometry of the cutting tool edge is modelled based on scanning electron microscope measurements. A constitutive elastic–plastic isotropic material model describing the relationship between stresses, strains, strain rates and hardnesses is modelled and implemented into ABAQUS/Explicit FE code by the user-defined subroutine VUMAT. Finite element analyses (FEA) are employed to obtain the relationship between cutting forces, uncut chip thickness, cutting velocity and material hardness. Numerous FEA are performed at different uncut chip thicknesses (0–20?μm), cutting velocities (104.7–4,723?mm/s) and hardnesses (35–60 HRC) using the FE model of orthogonal cutting. The full kinematics of the cutting tool including the run-out effect and the FE-predicted cutting forces are incorporated to predict the micro-milling cutting forces. The predicted micro-milling cutting forces have been experimentally validated at hardness of 43.2 HRC at different feed rates and spindle speeds. The result showed that the cutting forces and cutting temperatures increase by increasing the hardness of the AISI H13 while the stability limits of the process decrease by increasing the hardness.  相似文献   

19.
In this paper, by analysing the axial cutting thickness and the cutting graphics, a new concept of cutting ratio K in vibration drilling is introduced for the first time. Cutting ratio K can show the proportion of cutting time in a cutting cycle and describe the working condition of the drilling during the vibration drilling. The relationship between cutting parameters and vibration parameters are denoted as two parameters, ωf and E. By computer program, the relationships between K and ωf is found; their characteristic are periodicity, symmetry and having many peak values. The curves, which describe the relation between K and E, are digressive. The regularity can be used to optimise the parameters in vibration drilling to achieve good machine performance. The experiment results indicate that the thrust, torque and the drill life are related to cutting ratio K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号