首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
张福成  罗海辉 《中国陶瓷》2006,42(9):40-42,39
利用SiC和Al2O3纳米粉末在空气中通过反应烧结法制备了氧化铝陶瓷和氧化铝/0.96~8.7 2vol.%莫来石复合陶瓷。通过磨粒磨损试验测定了样品的耐磨性,观察了样品的磨损表面,测量了磨损表面的剥落面积比率。磨损率可以用磨损表面的剥落面积比率定量表示。相对于氧化铝陶瓷,氧化铝/莫来石复合陶瓷的耐磨性有很大提高,主要是由于减小了剥落面积比率。  相似文献   

2.
SiC coating was deposited on carbon/carbon (C/C) composites by chemical vapor deposition (CVD). The effects of elevated temperatures on tribological performance of SiC coating were investigated. The related microstructure and wear mechanism were analyzed. The results show that the as-deposited SiC coating consists of uniformity of β-SiC phase. The mild abrasive and slight adhesive wear were the main wear mechanisms at room temperature, and the SiC coating presented the maximum friction coefficient and the minimum wear rate. Slight oxidation of debris was occurred when the temperature rose to 300?°C. As the temperature was above 600?°C, dense oxide film formed on the worn surface. The silica tribo-film replaced the mechanical fracture and dominated the frication process. However, the aggravation of oxidation at elevated temperatures was responsible for the decrease of friction coefficient and the deterioration of wear rate. The SiC coating presented the minimum friction coefficient and the maximum wear rate when the temperature was 800?°C.  相似文献   

3.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

4.
以粉状SiC纤维、Al2O3纤维、高强碳纤维(CF)、中强CF、低强CF增强聚四氟乙烯(PTFE),研究了纤维种类、含量对PTFE力学和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对试样拉伸断口形貌进行观察,探讨了复合材料的增强机理.结果表明,粉状SiC纤维、Al2O3纤维及CF均能提高PTFE的硬度和耐磨性;高强CF、中强CF及Al2O3纤维能提高其拉伸强度;5种纤维均使PTFE冲击强度下降,但咖/高强CF复合材料的冲击强度降幅较小;SEM分析表明,SiC纤维与PTFE的界面结合强度较低,界面出现了许多空隙,中强CF、高强CF、Al2O3纤维与PT-FE界面结合较好,拉伸断口处多数纤维与基体牢固粘附而难以拔出,PTFE/低强CF复合材料呈典型的脆性断裂特征.  相似文献   

5.
利用非均匀成核的方法在纳米SiC粒子表面包覆一层Al2 O3,通过胶态悬浮液将其均匀分散于Al2 O3 基体中 ,制备出晶内型结构为主的Al2 O3/SiCp 纳米复相陶瓷。通过对材料显微结构及断口形貌分析 ,发现Al2 O3/SiCp 纳米复相陶瓷中 ,含纳米SiC粒子的Al2 O3 晶粒内 ,在残余热应力作用下产生了大量的位错。位错的交截、组合导致微裂纹成核 ,从而诱发材料发生非平面穿晶断裂。说明晶内SiC粒子是改变材料断裂模式的主要原因  相似文献   

6.
Wear resistance of ceramics can be improved by suppressing fracture, which can be accomplished either by decreasing the grain size or by reducing the size of the deformation zone. We have combined these two strategies with the goal of understanding the atomistic mechanisms underlying the plasticity‐controlled friction and wear in nanocrystalline (nc) silicon carbide (SiC). We have performed molecular dynamics simulations of nanoscale wear on nc‐SiC with 5 nm grain diameter with a nanoscale cutting tool. We find that grain‐boundary (GB) sliding is the primary deformation mechanism during wear and that it is accommodated by heterogeneous nucleation of partial dislocations, formation of voids at the triple junctions, and grain pull‐out. We estimate the stresses required for heterogeneous nucleation of partial dislocations at triple junctions and shear strength of GBs. Pile up in nc‐SiC consists of grains that were pulled out during deformation. We compare the wear response of nc‐SiC to single‐crystal (sc) SiC and show that scratch hardness of nc‐SiC is lower than that of sc‐SiC. Our results demonstrate that the higher scratch hardness in sc‐SiC originates from nucleation and motion of dislocations, whereas nc‐SiC is more pliable due to additional mechanism of deformation via GB sliding.  相似文献   

7.
Si3N4 matrix composites reinforced by SiC whiskers, SiC particles, or both were fabricated using the hot-pressing technique. The mechanical properties of the composites containing various amounts of these SiC reinforcing materials and different sizes of SiC particles were investigated. Fracture toughness of the composites was significantly improved by introducing SiC whiskers and particles together, compared with that obtained by adding SiC whiskers or SiC particles alone. On increasing the size of the added SiC particles, the fracture toughness of the composites reinforced by both whiskers and particles was increased. Their fracture toughness also showed a strong dependence on the amount of SiC particles (average size 40 μm) and was a maximum at the particle content of 10 vol%. The maximum fracture toughness of these composites was 10.5 MPa·m1/2 and the flexural strength was 550 MPa after addition of 20 vol% of SiC whiskers and 10 vol% of SiC particles having an average particle size of 40 μm. These mechanical properties were almost constant from room temperature to temperatures around 1000°C. Fracture surface observations revealed that the reinforcing mechanisms acting in these composites were crack deflection and crack branching by SiC particles and pullout of SiC whiskers.  相似文献   

8.
Processing effects of wet ball-milling on the microstructure and fracture strength of Al2O3/5 vol% SiC nanocomposites were investigated. Homogeneous microstructure and a high fracture strength of 1200 MPa could be achieved under the milling condition of relatively low wear contents of Al2O3 grinding media, maintaining the homogeneity of the ball-milled powders. The fracture strength decreased with increasing wear content. Degradation of fracture strength was caused by abnormal grain growth related to wear particles from the Al2O3 balls.  相似文献   

9.
在工业冶炼碳化硅(SiC)过程中,在石墨基体上制备具有耐磨特性的SiC镀层。讨论了SiC镀层的形成过程,采用X射线衍射仪(XRD)分析了SiC镀层的物相结构,采用隧道扫描电镜(SEM)分析了镀层的表面形貌。并分析了SiC镀层的硬度和耐磨特性。结果表明:镀层为高温稳定型α-SiC,同时伴有Fe3Si和SiO2杂相出现,SiC镀层的表面硬度达到了1120HV,磨损机制为颗粒磨损,具有较好耐磨性能。  相似文献   

10.
Dry ceramic block-on-steel ring wear tests were performed at high loads in several Al2O3/20 vol.% SiC composites as a function of the SiC grain size, which ranged from 0.2 to 4.5 μm in d50. The wear resistance of the monolithic alumina was radically improved by the addition of the SiC particles, reducing down to one order of magnitude wear rate. Two different behaviours were identified according to the microstructural observations on the worm surfaces: intergranular fracture and grain pull-out in the monolithic Al2O3, and plastic deformation and surface polishing in the composites. The wear resistance of the Al2O3/SiC composites increased with the SiC grain size due to their fracture toughness enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号