首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A major goal of signal transduction research is to identify the substrates and roles of the many protein kinases. The task might be simplified by the discovery that the mutation of a single amino acid dramatically alters the nucleotide specificity of protein kinases and their inhibition by a particular class of anti-inflammatory drug.  相似文献   

2.
Degradation is one of several factors that may affect the level of accumulation of transgene products in plants. In plants engineered to secrete antimicrobial proteins to the intercellular compartment of leaves, the degenerative activity of proteases residing in leaf intercellular fluid (IF) could be critical to achieving the expected transgene function. We synthesized a structural analogue (MB39) of the antibacterial protein cecropin B and compared the susceptibility of both proteins to degradation in vitro by IF extracted from leaves of various crops. The half-life of the two proteins in the various IF extracts ranged from 3 min to 25.5 h, with the analogue MB39 displaying the longer half-life in IF from nine of 10 species. Overall, the half-life of MB39 averaged 2.9 times greater than that of cecropin B. Analysis of the peptides produced by endopeptidase activity in potato iF indicated that the 5.7-fold lower degradation rate of MB39 was associated with the substitution of valine for methionine at residue 11 of cecropin B. These findings point to the possibility of tailoring antimicrobial protein genes to reduce the rate of protein degradation in a particular target crop.  相似文献   

3.
We report a study of the relative reactivity of the common amino acids and of their residues in lysozyme with osmium tetroxide, the osmium tetroxide-pyridine reagent, and with the oxo-osmium(VI)-pyridine reagent. With free amino acids, the osmium(VIII) reagents are most reactive with Met, Cys, His, Thr, Ser, Trp, Lys, and Pro; the osmium(VI) reagent only reacts significantly with His, Met, Cys, Thr, and Ser. In lysozyme, only Cys, Met, and Trp react extensively with the osmium(VIII) reagents; with the osmium(VI) reagent, Cys and Met are most reactive. We also note evidence both for cross-linking of proteins and for peptide bond cleavage, which appears to have considerable specificity for tryptophanyl residues.  相似文献   

4.
A reinvestigation of the primary structure of Qbeta coat protein between positions 1 and 60 was undertaken to resolve two discrepancies between the published amino acid seuqence (Maita, T., and Konigsberg, W. (1971) J. Biol. Chem. 246, 5003-5024) and the cognate nucleotide sequence recently determined in our laboratory (C. Escarmis and M. A. Billeter, unpublished results). The 22nd amino acid was asparagine rather than aspartic acid, and an additional amino acid, serine, was present between proline in position 55 and arginine in position 56. The revised structure agrees with the nucleotide sequence determined so far.  相似文献   

5.
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.  相似文献   

6.
The objective of this study was to determine whether differential labeling of 13C occurs in pigs fed diets with different 13C abundances and, if so, to use 13C as a label to determine true amino acid digestibility. Forty-eight pigs averaging 10.5 kg BW were fed dietary treatments consisting of a corn-corn gluten meal-crystalline amino acid diet (C-CGM) and a wheat-soybean meal diet (W-SBM). The 13C abundance of the amino acid fraction (AAF) of the C-CGM and W-SBM diets averaged delta 13C -14.19 and -26.36/1000, respectively. Three pigs/treatment group were killed when groups averaged 10.5 (initial), 22.9, and 46.6 kg BW, and AAF of organs were analyzed for 13C abundance. Carbon 13 in empty body AAF increased (-18.14, -13.98, and -12.66/1000) with increasing body weight in pigs fed the C-CGM diet and decreased (-18.06, -22.78, and -24.76/1000) in pigs fed the W-SBM diet. Liver, small intestine, and longissimus muscle tissues showed similar trends. Each tissue had dietary treatment effects (P < .001) and dietary treatment x weight group (P < .001) interactions. Ten pigs averaging 55.0 kg BW from each treatment group were assigned to metabolism cages and fed at 0700 and 1900. Six of these pigs from each treatment group were implanted with T-cannulas in the ileum and given a 17-d recovery period. At 1900 on d 0 of the collection phase, pigs were switched to the opposite diet that contained chromic oxide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The Ras and Rap1A proteins can bind to the Raf and RalGDS families. Ras and Rap1A have Glu and Lys, respectively, at position 31. In the present study, we analyzed the effects of mutating the Glu at position 31 of the c-Ha-Ras protein to Asp, Ala, Arg, and Lys on the interactions with Raf-1 and RalGDS. The Ras-binding domain (RBD) of Raf-1 binds the E31R and E31K Ras mutants less tightly than the wild-type, E31A, and E31D Ras proteins; the introduction of the positively charged Lys or Arg residue at position 31 specifically impairs the binding of Ras with the Raf-1 RBD. On the other hand, the ability of the oncogenic RasG12V protein to activate Raf-1 in HEK293 cells was only partially reduced by the E31R mutation but was drastically impaired by the E31K mutation. Correspondingly, RasG12V(E31K) as well as Rap1A, but not RasG12V(E31R), exhibited abnormally tight binding with the cysteine-rich domain of Raf-1. On the other hand, the E31A, E31R, and E31K mutations, but not the E31D mutation, enhanced the RalGDS RBD-binding activity of Ras, indicating that the negative charge at position 31 of Ras is particularly unfavorable to the interaction with the RalGDS RBD. RasG12V(E31K), RasG12V(E31A), and Rap1A stimulate the RalGDS action more efficiently than the wild-type Ras in the liposome reconstitution assay. All of these results clearly show that the sharp contrast between the characteristics of Ras and Rap1A, with respect to the interactions with Raf-1 and RalGDS, depends on their residues at position 31.  相似文献   

8.
9.
10.
We have identified a new human cDNA (y+L amino acid transporter-1 (y+LAT-1)) that induces system y+L transport activity with 4F2hc (the surface antigen 4F2 heavy chain) in oocytes. Human y+LAT-1 is a new member of a family of polytopic transmembrane proteins that are homologous to the yeast high affinity methionine permease MUP1. Other members of this family, the Xenopus laevis IU12 and the human KIAA0245 cDNAs, also co-express amino acid transport activity with 4F2hc in oocytes, with characteristics that are compatible with those of systems L and y+L, respectively. y+LAT-1 protein forms a approximately 135-kDa, disulfide bond-dependent heterodimer with 4F2hc in oocytes, which upon reduction results in two protein bands of approximately 85 kDa (i.e. 4F2hc) and approximately 40 kDa (y+LAT-1). Mutation of the human 4F2hc residue cysteine 109 (Cys-109) to serine abolishes the formation of this heterodimer and drastically reduces the co-expressed transport activity. These data suggest that y+LAT-1 and other members of this family are different 4F2 light chain subunits, which associated with 4F2hc, constitute different amino acid transporters. Human y+LAT-1 mRNA is expressed in kidney > peripheral blood leukocytes > lung > placenta = spleen > small intestine. The human y+LAT-1 gene localizes at chromosome 14q11.2 (17cR approximately 374 kb from D14S1350), within the lysinuric protein intolerance (LPI) locus (Lauteala, T., Sistonen, P. , Savontaus, M. L., Mykkanen, J., Simell, J., Lukkarinen, M., Simmell, O., and Aula, P. (1997) Am. J. Hum. Genet. 60, 1479-1486). LPI is an inherited autosomal disease characterized by a defective dibasic amino acid transport in kidney, intestine, and other tissues. The pattern of expression of human y+LAT-1, its co-expressed transport activity with 4F2hc, and its chromosomal location within the LPI locus, suggest y+LAT-1 as a candidate gene for LPI.  相似文献   

11.
The synthesis and isolation in purified form of two analogues of insulin is described. [21-Isoasparagine-A] ([Iasn21-A]) insulin differs from the parent molecule in that the amino acid residue, asparagine, found at the C terminus of the A chain (A21) has been replaced by isoasparagine. [Sar1, Iasn21-A] insulin differs from insulin in that both the A1 and A21 amino acid residues, glycine and asparagine, have been substituted by sarcosine and isoasparagine, respectively. The synthesis of these analogues followed the pattern employed in this laboratory for the synthesis of insulin and its analogues. The S-sulfonated derivatives of the A chain analogues were chemically synthesized, converted to their sulfhydryl forms, and then combined with the S-sulfonated B chain to produce the respective insulin analogues. Isolation of the insulin analogues from the combination mixtures was effected by chromatography on a carboxymethylcellulose column with an exponential sodium chloride gradient. By the mouse convulsion assay method [Iasn21-A]insulin possessed a potency of 21 IU/mg and [Sar1, Iasn21-A] insulin 15 IU/mg. The radioimmunoassay method gave values of 16 IU/mg for the former and 7IU/mg for the altter analogue. The natural hormone has a potency of 23-25 IU/mg by both assay methods. These data indicate that the alpha- and beta-carboxyl groups of the A21 amino acid residue are nearly equivalent in terms of their contribution to the expression of the biological activity of insulin. Furthermore, these data strengthen the speculation (Cosmatos, A., Johnson, S., Breier, B., and Katsoyannis, P. G. (1975), J. Chem. Soc. Perkin Trans. 1, 2157) that the change in the relative positive charge at the N-terminal amino acid residue of the A chain is responsible for the considerable decrease in the immunoreactivity observed in such modified insulins.  相似文献   

12.
The roles of the known tumor necrosis factor (TNF) receptors (TNFR-I and TNFR-II) and their associated signaling pathways in mediating the diverse actions of TNF remain incompletely defined. We have found that a proportion of exogenous TNF is delivered to mitochondria as well as to lysosomes. Using confocal and immunoelectron microscopy and Western blotting of subcellular fractions, we have identified a 60-kd protein in the inner mitochondrial membrane that is recognized by a monoclonal antibody to TNFR-II. In isolated mitochondria, this protein binds [125I]-TNF. This provides evidence of a mitochondrial binding protein for an extracellular ligand and demonstrates the presence of a pathway capable of delivering TNF from the cell surface to mitochondria. These findings suggest that TNF effects on cells may be due in part to a direct effect on mitochondria.  相似文献   

13.
The binding site for tat protein on TAR RNA has been defined in quantitative terms using an extensive series of mutations. The relative dissociation constants for the mutant TAR RNAs were measured using a dual-label competition filter binding assay in which 35S-labelled wild-type TAR RNA (K1) was competed against 3H-labelled mutant TAR RNA (K2). The error in the self-competition experiment was usually less than 10% (e.g. K2/K1 = 1.07 +/- 0.05, n = 19) and the experimental data accurately matched theoretical curves calculated with fitted dissociation constants. Mutations in U23, a critical residue in the U-rich "bulge" sequence, or in either of the two base-pairs immediately above the "bulge", G26.C39 and A27.U38 reduced that affinity by 8- to 20-fold. Significant contributions to tat binding affinity were also made by the base-pairs located immediately below the bulge. For example, mutation of A22.U40 to U.A reduced tat affinity 5-fold, and mutation of G21.C41 to C.G reduced tat affinity 4-fold. The binding of a series of peptides spanning the basic "arginine-rich" sequence of tat was examined using both filter-binding and gel mobility shift assays. Each of the peptides showed significantly reduced affinities for wild-type TAR RNA compared to the tat protein. The ADP-2 (residues 43 to 72), ADP-3 (residues 48 to 72) and ADP-5 (residues 49 to 86) peptides were unable to discriminate between wild-type TAR RNA and TAR RNA mutants with the same fidelity as the tat protein. For example, these peptides showed no more than 3-fold reductions in affinity relative to wild-type TAR RNA for the U23-->C mutation in the bulge, or G26.G39-->C.G mutation in the stem of TAR RNA. By contrast, the ADP-I (residues 37 to 72), ADP-4 (residues 32 to 62) and ADP-6 (residues 32 to 72) peptides, which each carry amino acid residues from the "core" region of the tat protein have binding specificities that more closely resemble the protein. The ADP-4 and ADP-6 peptides showed between 4- and 7-fold reductions in affinity for the U23-->C or G26.C39-->C.G mutations. The ADP-1 peptide most closely resembles the protein in its binding specificity and showed 9-fold and 14-fold reductions in affinity for the two mutants, respectively. Chemical-modification interference assays using diethylpyrocarbonate (DEPC) and ethylnitrosourea (ENU) were also used to compare the binding properties of the tat protein and the tat-derived peptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The lac permease of E. coli is a paradigm for secondary active transporter proteins that transduce the free energy stored in electrochemical ion gradients into work in the form of a concentration gradient. This hydrophobic, polytopic, cytoplasmic membrane protein catalyses the coupled, stoichiometric translocation of beta-galactosides and H+, and it has been solubilized, purified, reconstituted into artificial phospholipid vesicles and shown to be solely responsible responsible for beta-galactoside transport as a monomer. The lacY gene which encodes the permease has been cloned and sequenced, and all available evidence indicates that the protein has 12 transmembrane domains in alpha-helical configuration that traverse the membrane in zigzag fashion connected by hydrophilic loops with the N and C termini on the cytoplasmic face of the membrane. Extensive use of site-directed and Cys-scanning mutagenesis indicates that very few residues in the permease are directly involved in the transport mechanism, but the permease appears to be a highly flexible protein that undergoes widespread conformational changes during turnover. Based on a variety of site-directed approaches which include second-site suppressor analysis and site-directed mutagenesis, excimer fluorescence, engineered divalent metal binding sites, chemical cleavage, EPR, thiol crosslinking and identification of discontinuous mAb epitopes, a helix packing model has been formulated.A mechanism for the coupled translocate ion of substrate and H+ by the lac permease of E. coli is proposed. Four residues are irreplaceable with respect to coupling, and the residues are paired in the tertiary structure--Arg-302 (helix IX) with Glu-325 (helix 10) and His-322 (helix 10) with Glu-269 (helix VIII). In an adjacent region of the molecule at the interface between helices VIII and V is the substrate translocation pathway in which Glu-126 and Arg-144 appear to play key roles. Because of this arrangement, interfacial changes between helices VIII and V are transmitted to the interface between helices IX and X and vice versa. Upon ligand binding, a structural change at the interface between helices V and VIII disrupts the interaction between Glu-269 and His-322, Glu-269 displaces Glu-325 from Ag-302 and Glu-325 is protonated.Simultaneously, protonated Glu-325 becomes inaccessible to water which drastically increases its pKa. In this configuration, the permease undergoes a freely reversible conformational change that corresponds to translocation of the ternary complex. In order to return to ground state after release of substrate, the Arg-302-Glu-325 interaction must be reestablished which necessitates loss of H+ from Glu-325. The H+ is released into a water-filled crevice between helices IX and X which becomes transiently accessible to both sides of the membrane due to a change in helix tilt, where it is acted upon equally by either the membrane potential or the pH gradient across the membrane. Remarkably few amino-acid residues appear to be critically involved in the transport mechanism of lac permease, suggesting that relatively simple chemistry drives the mechanism. On the other hand, widespread, cooperative conformational changes appear to be involved in turnover. As a whole the data suggest that the 12 helices which comprise the permease are loosely packed with a considerable amount of water in the interstices and that surface contours are important for sliding or tilting motions that occur during turnover. This surmise coupled with the indication that few residues are essential to the mechanism is encouraging in that it suggest that the possibility that a relatively low resolution structure (i.e. helix packing) plus localization of the critical residues and the translocation pathway can provide important insights into the mechanism. (ABSTRACT TRUNCATED)  相似文献   

15.
Three cold-sensitive mutants in phage P22 coat protein have been characterized to determine the effects of the amino acid substitutions that cause cold sensitivity on the folding pathway and the conformation of refolded coat protein. Here we find that the three cold-sensitive mutants which have the threonine residue at position 10 changed to isoleucine (T10I), the arginine residue at position 101 changed to cysteine (R101C), or the asparagine residue at position 414 changed to serine (N414S) were capable of folding from a denatured state into a soluble monomeric species, but in each case, the folded conformation was altered. Changes in the kinetics of folding were observed by both tryptophan and bisANS fluorescence. In contrast to the temperature-sensitive for folding coat protein mutants which can be rescued at nonpermissive temperatures in vivo by the overproduction of molecular chaperones GroEL and GroES [Gordon, C. L., Sather, S. K., Casjens, S., & King, J. (1994) J. Biol. Chem. 269, 27941-27951], the folding defects associated with the cold-sensitive amino acid substitutions were not recognized by GroEL and GroES.  相似文献   

16.
The gamma-aminobutyric acid type A (GABAA) receptor is a transmitter-gated ion channel mediating the majority of fast inhibitory synaptic transmission within the brain. The receptor is a pentameric assembly of subunits drawn from multiple classes (alpha1-6, beta1-3, gamma1-3, delta1, and epsilon1). Positive allosteric modulation of GABAA receptor activity by general anesthetics represents one logical mechanism for central nervous system depression. The ability of the intravenous general anesthetic etomidate to modulate and activate GABAA receptors is uniquely dependent upon the beta subunit subtype present within the receptor. Receptors containing beta2- or beta3-, but not beta1 subunits, are highly sensitive to the agent. Here, chimeric beta1/beta2 subunits coexpressed in Xenopus laevis oocytes with human alpha6 and gamma2 subunits identified a region distal to the extracellular N-terminal domain as a determinant of the selectivity of etomidate. The mutation of an amino acid (Asn-289) present within the channel domain of the beta3 subunit to Ser (the homologous residue in beta1), strongly suppressed the GABA-modulatory and GABA-mimetic effects of etomidate. The replacement of the beta1 subunit Ser-290 by Asn produced the converse effect. When applied intracellularly to mouse L(tk-) cells stably expressing the alpha6beta3gamma2 subunit combination, etomidate was inert. Hence, the effects of a clinically utilized general anesthetic upon a physiologically relevant target protein are dramatically influenced by a single amino acid. Together with the lack of effect of intracellular etomidate, the data argue against a unitary, lipid-based theory of anesthesia.  相似文献   

17.
We have identified and characterized a 9S protein complex from a Xenopus ovary cytosolic subfraction (fraction A) that constitutes this fraction's activity in recognizing a model nuclear import substrate and docking it at the nuclear pore complex. Because of its function, the complex is termed karyopherin. The 54- and 56-kDa subunits of the complex are termed alpha 1 and alpha 2, respectively, and the 97-kDa subunit is termed beta. In an alternative approach we have identified karyopherin beta from a rat liver cytosolic subfraction A by using immobilized rat nucleoporin Nup98 in a single, affinity-based enrichment step. We have molecularly cloned and sequenced rat karyopherin beta. Comparison with protein sequence data banks showed no significant similarity to other known proteins. Using nitrocellulose-immobilized rat liver nuclear envelope proteins and nuclear import substrate as a ligand, we found Xenopus fraction A-dependent binding to at least three bona fide nucleoporins (Nup214, Nup153, and Nup98) and to a candidate nucleoporin with an estimated molecular mass of 270 kDa. We propose that these nucleoporins function as docking proteins for karyopherin-mediated binding of substrate in a nuclear import/export pathway across the nuclear pore complex.  相似文献   

18.
The activity of the flavin-containing monooxygenase (FMO) can be modulated by a number of nitrogen-containing compounds in a manner that is both isoform and modulator-dependent. We now show that the direction (activation or inhibition) and extent of modulation can also be dependent on substrate concentration. Imipramine activates methimazole metabolism catalyzed by rabbit FMO1 or FMO2 at methimazole concentrations greater than 50 or 100 microM, respectively, and inhibits at lower methimazole concentrations. The extent of the activation increases as the substrate concentration increases, and the extent of inhibition increases as the substrate concentration decreases. With either inhibition or activation, the magnitude of the effect shows a similar, direct dependency on imipramine concentration. In contrast, imipramine inhibits the metabolism of methimazole catalyzed by pig FMO1 at all substrate concentrations. The structural basis for this unique ortholog difference between the responses of rabbit and pig FMO1 to imipramine was studied by random chimeragenesis and site-directed mutagenesis. Results with chimeras indicated that modulation of FMO1 activity by imipramine is controlled to a great extent by two areas of the FMO primary structure (residues 381-432 and 433-465). Four amino acids in these regions (positions 381, 400, 420 and 433) and one additional residue (position 186) were identified by site-directed mutagenesis as primary determinants of the imipramine response. When the residues at these positions in rabbit FMO1 are exchanged for the corresponding residues of pig FMO1, a mutant with the functional properties of pig FMO1 is produced. Our results suggest that the response of FMO1 to imipramine involves a distribution between two sites that is regulated by structural features that do not alter the overall binding. The inhibition observed, although it appears to be competitive, likely does not involve competition for a binding site since alteration of imipramine metabolism has no effect on the parameters of methimazole metabolism.  相似文献   

19.
A spectrophotometric assay was developed for measuring the uptake of the antibiotic actinobolin by hydroxylapatite (HAP) or powdered human enamel. The assay is sufficiently sensitive to detect less than 2.0 mug actinobolin/ml of: 0.01 M sodium phosphate buffer at pH 5.5, 7.0, or 8.0; deionized water; deionized water containing 1% salivary supernatant; or each of the above indicated solvent systems containing 1-5 parts per million sodium fluoride. The utility of the assay system has been demonstrated by date which show that approximately 5-7 mug of actinobolin are bound per 10 mg of HAP or powdered enamel.  相似文献   

20.
Recent evidence indicates that several members of the Na+-coupled transporter family are regulated, and this regulation in part occurs by redistribution of transporters between intracellular locations and the plasma membrane. We elucidate components of this process for both wild-type and mutant GABA transporters (GAT1) expressed in Xenopus oocytes using a combination of uptake assays, immunoblots, and electrophysiological measurements of membrane capacitance, transport-associated currents, and GAT1-specific charge movements. At low GAT1 expression levels, activators of protein kinase C (PKC) induce redistribution of GAT1 from intracellular vesicles to the plasma membrane; at higher GAT1 expression levels, activators of PKC fail to induce this redistribution. However, coinjection of total rat brain mRNA with GAT1 permits PKC-mediated modulation at high transporter expression levels. This effect of brain mRNA on modulation is mimicked by coinjection of syntaxin 1a mRNA and is eliminated by injecting synaptophysin or syntaxin antisense oligonucleotides. Additionally, botulinum toxins, which inactivate proteins involved in vesicle release and recycling, reduce basal GAT1 expression and prevent PKC-induced translocation. Mutant GAT1 proteins, in which most or all of a leucine heptad repeat sequence was removed, display altered basal distribution and lack susceptibility to modulation by PKC, delineating one region of GAT1 necessary for its targeting. Thus, functional regulation of GAT1 in oocytes occurs via components common to transporters and to trafficking in both neural and non-neural cells, and suggests a relationship between factors that control neurotransmitter secretion and the components necessary for neurotransmitter uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号