首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aqueous ozonation reactions of surfactants have been reviewed, including the degree of reaction and ozonation byproduct identity. Compounds are classified into three groups: anionic, cationic and non-ionic surfactants. Experimental conditions for each study reviewed are summarized. Much work has been carried out under conditions unlikely to occur during drinking water treatment. Thus, most of the findings of the papers reviewed cannot be directly applied to potable water treatment. However this review can serve to indicate the likely reactivity of the individual surfactants towards ozone and the possible byproducts formed. This reactivity depends mainly upon the chemical structure of the surfactants. The removal of surfactants is pH dependent, with the best results being obtained in alkaline media. High ozone doses usually do not cause complete disruption of the surfactants, while smaller doses are sufficient to enhance their biodegradation.  相似文献   

2.
The kinetics and degradation process of meta-Chloronitrobenzene by ozonation in aqueous solution were investigated. Compared to para-chlorobenzoic acid, the rate constant of meta-Chloronitrobenzene with O3 was 0.59 L/(mol·s), while that of the reaction with ?OH was 2.07 × 109 L/(mol·s). The main intermediate products were chloronitrophenols and some carboxylic acids. Neither chlorophenols nor nitrophenols was detected. The five-day biochemical oxygen demand and chemical oxygen demand were determined. The ratio of the former to the latter was above 0.3 at 20 min. It was feasible to perform a continuous biotreatment step after 20 min of ozonation.  相似文献   

3.
In this study, the efficiency of ozone to degrade organic compounds of nuclear laundry water was studied at different pH and temperatures and at elevated temperature with hydrogen peroxide. The degradation of non-ionic surfactant and other organic compounds was analyzed by COD, TOC, BOD and molecular weight distribution measurements. Zeta potential measurements were also performed in order to interpret the obtained results. The most favorable degradation conditions were at pH 7 with 43%, 34% and 61% reductions of COD, TOC and BOD, respectively.  相似文献   

4.
Ampicillin (AP) is a penicillin-type antibiotic and one of the most widely used bacteriostatic antibiotics in human and veterinary medicine. A kinetic study was performed under different pH conditions (5, 7.2, and 9) to determine the degradation efficiency of AP by ozonation. The second-order rate constants for the direct reaction of AP with ozone were measured to be 2.2 ?5.4×105 M?1s?1 under the pH conditions tested. The rate constants were greater at higher pH. The potential toxicity of the AP intermediates formed after ozonation under the various pH conditions were examined using a bioluminescence assay on Vibrio fischeri species. The biodegradability of the AP degraded products was also determined by measuring the BOD5/COD of the ozonated samples under the different pH conditions. A lower biodegradability and acute toxicity was observed at the lowest pH (pH 5). These results suggest that higher pH conditions are needed for the removal of AP by ozonation in order to mitigate the residual toxicity that can remain even after complete removal of the parent compound by ozonation.  相似文献   

5.
This work deals with the biodegradability and toxicity of three non-steroidal anti-inflammatory drugs (NSAID) (diclofenac, ibuprofen and naproxen) treated by ozonation. The results show that the total removal of 200 mg L?1 of diclofenac and 100 mg L?1 of naproxen is possible using an ozone dose of 0.20 and 0.04 g L?1, respectively. For 200 mg L?1 of ibuprofen, 90% removal is achieved using an ozone dose of 2.3 g L?1. The BOD5/COD ratio, the Zahn-Wallens test and EC50 toxicity test (Microtox) are chosen as biological and toxicity indicators of NSAID intermediates. The evolution of BOD5/COD ratio during 1 hour of treatment is evaluated and the results show that ozonation improves the biodegradability for the three NSAID treated solution. The Zahn-Wellens test for diclofenac and ibuprofen solutions shows that biological mineralization, after 28 days, is higher for diclofenac than for ibuprofen solution. According to the Microtox test, the treatment with ozone removes the toxicity of the naproxen solution. Taking into account the results obtained with the biocompatibility tests it could be assumed that ozonation is an adequate treatment for removal NSAID in aquatic medium, and the ozonated effluents could be post-treated in a biological wastewater facility.  相似文献   

6.
In this study the treatment efficiency of different ultraviolet (UV)-enhanced ozonation processes for degradation of two surfactants, sodium dodecylbenzene sulfonate [200 mg/L or 0.3 critical micelle concentration (CMC)] and a nonylphenol ethoxylate with 40 oxyethylene units (200 mg/L ~0.5 CMC), were investigated in laboratory-scale experiments at ambient temperature. The absorbance band of the aromatic ring of the surfactants was monitored during the oxidation process. The reduction in chemical oxygen demand (COD) and total organic carbon (TOC) of the surfactant solution was evaluated. The results showed that a combination of UV irradiation and ozonation was considerably more efficient than the individual processes (at least two times more efficient in terms of COD and TOC reductions). The synergistic effect of ozonation and UV irradiation was particularly pronounced when medium-pressure UV irradiation was used. By adding alkali to the solution, the efficiency of the UV-enhanced ozonation increased with respect to COD reduction but decreased with respect to TOC reduction. This indicates partial oxidation with lower degree of mineralization of the surfactants.  相似文献   

7.
The influence of preliminary oxidation of nonionic surfactants solutions on the biosorption efficiency of activated carbon was investigated. The Gibbs free energy of adsorption (?ΔGo a) of oxidation products from water on an activated carbon was used as a parameter of the bacterial resistance of oxidation products adsorption. It was established for nonionic surfactants, that ozonation essentially raised the contents of nonionic surfactant homologues with a low degree of ethoxylation. It leads to the increase in the Gibbs free energy of oxidation products adsorption and to inhibition of biodegradation process.

It was shown that the efficiency of biosorption process after preliminary ozonation was 2–3 times lower than without preliminary treatment that correlated with changes of the free energy of adsorption.  相似文献   


8.
Recent studies have identified antibiotics and other pharmaceuticals in wastewater and surface water in many countries. The presence of low level antibiotics in the environment has raised concerns regarding potential selection of resistant bacterial strains that would render ineffective the use of some antibiotics in clinical practice. Recent reviews indicate the potential of ozonation and advanced oxidation processes in degrading pharmaceuticals in various types of water. However, no focus has been put on the impact of the operating conditions on the ozonation of these pharmaceuticals. This paper reviews the recent progress of ozonation of aqueous antibiotics in order to identify the influence of the operating conditions such as pH, temperature, use of hydrogen peroxide, ozone dosage, reactor setup and wastewater characteristics on the degradation of antibiotics.  相似文献   

9.
The objective of this study was to investigate the influence of ozonation of anionic and non-ionic surfactants on their aquatic toxicity. Toxicity values of various commercially important anionic and non-ionic surfactants have been determined using the luminescent bacterium Vibrio fischeri. Surface tension measurements were made to study the interfacial activity. The behavior depends on the chemical structure. Some intermediate ozonation products were found to be more toxic than the base surfactant and others were found to be less. Surfactants with aromatic rings such as linear alkyl benzene sulfonates, or surfactants with glycosidic groups such as alkylpolyglucosides, exhibit a lower toxicity after ozonation. On the other hand, ether groups present in the fatty-alcohol ethoxylates and ether carboxylic derivative surfactants, and carboxylic acid derivates present in the ether carboxylic derivative surfactants lead to increasing toxicity after ozonation. Surfactants with ether groups probably formed short-chain polyethoxylated compounds and carboxylic acids, which are possibly responsible for the surface-tension decrease that promotes the toxicity increase.  相似文献   

10.
New strategies for sludge stabilization and mineralization need to be developed since the use of sludge in agriculture is debatable and sludge incineration cannot be a systematic solution. Minimization of sludge production should be preferred. In this work, the effect of ozone on activated sludge solubilization and mineralization during batch experiments is assessed by establishing carbon and ozone mass balances. After extended ozonation of the sludge, more than 90% of the particulate carbon is modified. Depending on the experimental conditions, from 15 to 50% is found in a soluble form and from 35% to 95% was mineralized. The VSS/SS ratio decreases from 86% to less than 50% illustrating the sludge mineralization. The initial rate of ozone consumption by the sludge is very high (estimated value: 30 mgO3/g VSS.min) and corresponds to high rates of carbon solubilization and mineralization. More than 50% of the carbon obtained after ozonation is found to be readily biodegradable using a short-term BOD procedure.  相似文献   

11.
In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less-toxic, and renewable alternatives to currently used petroleum-based surfactants. Glycolipid surfactants, composed of a sugar headgroup and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°-alkyl-O-cellobiosides, 2°-alkyl-O-cellobiosides, and 1°-alkyl-O-melibiosides with straight-chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO2 evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and US environmental protection agency (EPA) definitions. The Microtox acute toxicity assay showed both chain length and headgroup had significant effects on toxicity, but most of the molecules were practically nontoxic according to EPA definitions with EC50 values >100 mg L−1. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC50 values were determined but in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.  相似文献   

12.
Ozonation of a natural tannin (NT; CODo?=?1195 mg/L; TOCo?=?342 mg/L; BOD5,o?=?86 mg/L) and a synthetic tannin ST; CODo?=?465 mg/L; TOCo?=?55 mg/L; BOD5,o?=?6 mg/L) being frequently applied in the polyamide dyeing process was investigated. Synthetic wastewater samples containing these tannins individually were prepared and subjected to ozonation at varying ozone doses (625– 1250 mgO3/L wastewater), at pH?=?3.5 (the application pH of tannins) and pH?=?7.0 at an ozone dose of 1125 mgO3/L wastewater. The collective environmental parameters COD, TOC, BOD5, UV254 and UV280 (UV absorbance at 254 nm and 280 nm, representing aromatic and unsaturated moieties, respectively) were followed during ozonation. Changes in the biodegradability of the tannins were evaluated in terms of BOD5 measurements conducted before and after ozonation. In addition, activated sludge inhibition tests employing heterotrophic biomass were run to elucidate the inhibitory effect of raw and ozonated textile tannins towards activated sludge biomass. Partial oxidation (45% COD removal at an ozone dose of 750 mg O3/L wastewater and pH?=?3.5) of ST was sufficient to achieve elimination of its inhibitory effect towards heterotrophic biomass and acceptable biodegradability improvement, whereas the inhibitory effect and biodegradability of NT could not be reduced via ozonation under the same reaction conditions.  相似文献   

13.
Aqueous solutions of nonionic surfactants are decomposed by ozone. In the experiments compounds differing in chemical structure (i.e., the presence of a benzene ring in the molecule, the type of aliphatic chain [linear or branched] and the length of the polyoxyethylene chain) were used. The research was conducted using solutions of Triton, Tergitol, Symperonic, and Brij surfactants produced by Fluka Chemie Ag. The initial concentrations were chosen to be over and below a critical micelle concentration (CMC). Decomposition was analyzed by polarography, spectrophotometry, total organic carbon (TOC) and chemical oxygen demand (COD) value. It was found that the rate and effectiveness of ozonation depended on the chemical structure of surfactant molecule, chain structure (linear or branched), oxyethylene chain lengthening, and a monomeric or micelle form of the surfactant molecule appearing in the solution.  相似文献   

14.
Surfactants are used in varieties of industrial cleansing processes as well as in consumer products. Spent surfactants normally enter domestic or industrial wastewater and are treated biologically. However, some of them are resistant to biodegradation and are released into the environment. Thus, the toxicity and environmental persistence of these surfactants are emerging concerns. Based on extensive review of the literature, ozonation and advanced oxidation using various combinations of ozone, hydrogen peroxide, ultraviolet light irradiation, and iron salts were found effective in degrading recalcitrant surfactants, including linear alkylbenzene sulfonates, alkylphenol ethoxylates, and quaternary ammonium surfactants. Biodegradability of these surfactants was improved after the treatment to some extent in the aqueous solution as well as in real wastewaters.  相似文献   

15.
The effects of ozonation on assimilable organic carbon (AOC) content of humic groundwater were investigated in batch experiments on three different groundwaters used as drinking water in Finland. All water samples had quite high concentrations of iron (range 2–10 mg/L) and manganese (range 0.1–0.2 mg/L) and therefore combined ozonation and filtration is a possible water purification method. The ozone dosage used varied from 0 to 16.6 mgO3/L (ΔO3/TOC?=?0–1.6). The ozone treatment increased the AOC concentration in the groundwater samples to different degrees. For example, an ozone dose of 3.9 mg/L increased the AOC concentration in different water as follows: from 49 μg/L to 55/L, from 7 μg/L to 119 μg/L and from 23 μg/L to 226 μg/L.  相似文献   

16.
Performance and efficiency of anionic [sodium lauryl ether sulfate (SLES) and sodium α-olefin sulfonate (AOS)] and amphoteric [cocamidopropyl betaine (CAB)] as well as nonionic [cocodiethanol amide (DEA), various ethoxylated alcohols (C12–C15–7EO, C10–7EO and C9–C11–7EO) and lauramine oxide (AO)] surfactants in various dishwashing liquid mixed micelle systems have been studied at different temperatures (17.0, 23.0 and 42.0 °C). The investigated parameters were critical micelle concentration (CMC), surface tension (γ), cleaning performance and, foaming, biodegradability and irritability of anionic (SLES/AOS) and anionic/amphoteric/nonionic (SLES/AOS/CAB/AO) as well as anionic/nonionic (SLES/AOS/DEA/AO, SLES/AOS/C12-C15-7EO/AO, SLES/AOS/C10–7EO/AO and SLES/AOS/C9–C11–7EO/AO) dishwashing surfactant mixtures. In comparison to the starting binary SLES/AOS surfactant mixture, addition of various nonionic surfactants promoted CMC and γ lowering, enhanced cleaning performance and foaming, but did not significantly affect biodegradability and irritability of dishwashing formulations. The anionic/nonionic formulation SLES/AOS/C9–C11–7EO/AO shows both the lowest CMC and γ as well as the best cleaning performance, compared to the other examined dishwashing formulations. However, the results in this study reveal that synergistic behavior of anionic/nonionic SLES/AOS/ethoxylated alcohols/AO formulations significantly improves dishwashing performance and efficiency at both low and regular dishwashing temperatures (17.0 and 42.0 °C) and lead to better application properties.  相似文献   

17.
Experiments for degradation of the extensively marketed Ponceau 4R dye in aqueous solution and for oxidation of raw wastewater from a confectionary industry have been carried out by using ozone. All the experiments were performed in a cylindrical semi-batch reactor at approximately 20 oC for 7200 s. A mass flow rate of 1.158?×?10?6 kg s?1 of ozone was continuously fed in the reactor. The pH of the azo dye aqueous solution (distilled water + Ponceau 4R) was always kept at approximately 5.8, while in the case of the raw wastewater the same factor was changed from 4.7 to 9.4 in two different experimental runs. Absorbance measurements at 508 nm show that the investigated azo dye found in the azo dye aqueous solution was completely degraded after only 600 s. At this initial period a substantial fall of TOC (Total Organic Carbon) (up to 45%) was noticed, but the rate was exponentially decreased at longer reaction times up to a TOC removal no higher than 60%. The ozonation was also responsible for reducing the apparent color of the raw wastewater to almost 10% of its initial value at the optimum pH (9.4 ± 1.5). The effect of pH was important on apparent color, but it had absolutely no influence on the kinetics results of COD (Chemical Oxygen Demand), which were kept constant over the entire period of reaction.  相似文献   

18.
Benzophenone-2 (BP-2) is an important type of UV filter that has been widely used and detected in the aquatic environment with greater estrogenic toxicity. In our work, the removal of BP-2 with the initial concentration of 25 mg L?1 was first carried out by ozone at different pH (ranging from pH 3.0 to 11.0), and we found a positive correlation between the pH values and the degradation efficiency of BP-2, among which the more rapid removal of BP-2 in alkaline condition was observed than acidic and neutral conditions. For the influence of aqueous humic acid (HA, the concentration ranged from 0 ppm to 100 ppm), the degradation rate of BP-2 by ozonation was first increased with the growth of humic acid concentration (from 0 ppm to 5 ppm), reaching to maximum at 5 ppm of HA and subsequently decreased with the growth of HA concentration (from 5 ppm to 100 ppm). Fourteen intermediate products in the ozonation process were distinguished by an electrospray time-of-flight mass spectrometer and then two degradation pathways were proposed. Through the theoretical calculation, we found the carbanyl group of BP-2 has the most reactivity to be easily attacked by ozone, providing us guides and theoretical basis on the supposed intermediate products. Furthermore, the P. phosphoreum acute toxicity test was conducted to evaluate the potential toxicity during the ozonation process.  相似文献   

19.
Regarding agro-wastewaters, the strong loads in bio-refractory substances and seasonality reduce the efficiency of biological treatments and ozonation can play an important role, so that this article reviews its application for such streams. Indeed, biodegradability and toxicity removal was assessed for a wide range of agro-effluents such as olive mill, wineries and distilleries, pulp and paper, cork and cheese production. Solid catalysts reveal promising potential, even though literature is still scarce reporting their use to actual streams. Thus, forthcoming research must embrace catalytic ozonation and continuous pilot-scale reactors behavior on the depuration of real agro-wastewaters to ensure future industrial application.  相似文献   

20.
The recalcitrant nature of pyrene and other polycyclic aromatic hydrocarbons (PAHs) lies in part in their low solubility in water, rendering them less susceptible to chemical and biological degradation. To overcome this remediation obstacle, this work investigates the use of a 2-stage ozonation process, first in nonpolar hexane phase then in polar aqueous phase, for the treatment of hydrophobic contaminants using pyrene as a model compound. The objectives of this research are to break down pyrene by using ozonation, identify the intermediates of pyrene, show a general degradation pathway of pyrene subject to ozonation and test the biodegradability of intermediates and byproducts of pyrene in the aqueous phase. The first stage briefly ozonates the contaminant at high concentration in organic solvent hexane, which facilitates very efficient conversion of the hydrophobic compounds into ring-opened polar intermediates containing alcohol, aldehyde, and acid functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号