首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of different field strength and energy density distributions in volume (VD), surface (SD) and coplanar discharge (CD) arrangements the ozone yield will differ in general. While in VD configurations the initial field strength distribution is rather uniform, the situation is quite different in CD and especially SD devices. The distributions change during discharge development as well as the energy density in the discharge region and by this the ozone yields. The situation in SD arrangements is discussed in detail and is compared with those in VD and CD configurations.  相似文献   

2.
In order determine the potential of coplanar discharge arrangements with short electrode distances for the production of ozone, a numerical model of the discharge behavior has been developed. The temporal and spatial distributions of the discharge parameters e.g. those of the field strength, the densities of the charged particles in the gas region and on the dielectric surface and that of the energy release reveal that the ozone production results from the electron phase of the discharge. Quantitative data of the productivity and efficiency of the ozone yield in a certain system are presented, which are in agreement with experimental results.  相似文献   

3.
In this paper, combining hybrid discharge with pellet alumina catalyst is used for ozone generation. The hybrid discharge including corona discharge (CD), surface discharge (SD) and dielectric barrier discharge (DBD) may happen in the device. Factors that affect the ozone production efficiency and concentration are studied, such as energy density, power, gas flow rate, frequency, peak voltage and catalysts.  相似文献   

4.
In the fields of material processing and environmental technology, atmospheric pressure non-thermal plasmas embrace a broad range of applications. Ozone generation is one of them. This paper discusses a DC-excited atmospheric pressure glow discharge in a multi-pin-to-plane electrode configuration for the production of ozone in air. The influence of discharge current, temperature, flow rate and air humidity is investigated. A simple model is proposed to predict the experimental results for the ozone production and ozone concentrations.  相似文献   

5.
The parameters, which determine the performance of ozone generators, are efficiency and maximum ozone concentration. The efficiency from oxygen has been found to be nearly independent on the kind of barrier discharge arrangement (volume, surface, coplanar), while the ozone concentration saturation level depends on the specific design of the generator. These phenomena are explained with features of the discharge process and the properties of chemical reactions, respectively. The importance of a limit in the energy density of the discharge is highlighted.  相似文献   

6.
Siemens made the first ozone generation system by corona discharge about hundred and fifty years ago. At present mainly two types of atmospheric pressure electrical discharges - corona discharge and dielectric barrier discharge are used for production of ozone. Another type of discharge, which can be used for this purpose, is multineedle to plate electrical discharge enhanced by the gas flow. Contrary to the conventional arrangement when the gas is flowing around the needles we studied the discharge in which the gas was pumped through the needles. Results of studies of ozone and nitrogen oxides production by DC electrical discharge in air at atmospheric pressure with a single hollow needle to plate electrode configuration enhanced by the flow of air through the needle for both polarities of the needle, different airflow rates and currents are presented in this paper.  相似文献   

7.
The efficiency of ozone generators is determined by many factors. Operating conditions such as feed gas quality and especially cooling conditions are of utmost importance. Cooling of ozone generators is absolutely necessary, since ozone destruction reactions increase exponentially with temperature. The most common way to cool an ozone generator is water flowing in close contact to the electrodes. The heat removal out of the discharge gap depends on different parameters. Electrical input power, cooling water flow conditions, electrode geometry and material properties are some of them. Simultaneously lowering cooling water temperature, applied power density and gap width, leads to a lower gas temperature in the discharge gap and thus to increased ozone production efficiency. Minimizing the temperature difference between the cooling water inlet and outlet improves the ozone production efficiency as well. This measure, however, results in high cooling water flows and requires additional cooling water chilling, resulting in higher operational costs and capital expenses. Cooling associated costs rise disproportionally with increasing cooling water flow. Simultaneously, energy consumption of ozone generators decreases as the average cooling water temperature goes down. As a result, there exists an optimum between the operational and capital expenses for the combination of ozone generator and cooling water system related expenses, offering significant cost savings for the customer.  相似文献   

8.
Industrial ozone generation uses a special high pressure, low temperature electrical discharge which is referred to as the dielectric barrier discharge or silent discharge. The filamentary structure of this discharge and the properties of individual microdischarges are discussed. The main reaction paths for the excited atomic and molecular species in oxygen and air are identified. Possible approaches to obtain high power densities, high ozone generating efficiencies or high ozone concentrations are discussed.  相似文献   

9.
Dielectric barrier discharge (DBD) reactors used as ozone generators are well known today and widely used for water treatment and air disinfection. The purpose of this article is to propose an experimental procedure based on the response surface modeling in order to optimize the geometrical dimensions of the cylindrical shape ozone generator, i.e., the discharge gap and the electrodes length. Because an effective ozone generator is expected to give high ozone concentration with a minimum of power requirements, the applied high voltage was associated with the geometrical parameters to carry out a composite centered faces design. Obtained results indicate that for an efficient ozone generator, length of the electrodes needs to be optimized while the discharge gap should be minimized.  相似文献   

10.
This work was motivated by the ozone production improvement by a dielectric barrier discharge supplied with a high voltage triggered pulsed generator. Particular attention was focused on the ozone generator cell geometry and on the type of electrical generator. A comparative parametrical analysis on two configurations of reactor was performed: an annular and a surface configuration. This study emphasizes that surface discharges coupled to ultra-short triggered high voltage generators stand out as an efficient process to produce ozone in large quantities.  相似文献   

11.
This paper deals with high frequency modeling of silent discharge ozone generators (OGs). The electrical characteristics of two simple silent discharge OGs operated at low and high frequency are analyzed and compared. An equivalent electric model is proposed for the operation of the OG at high frequency. This model can be used to optimize the electronic power converter used to supply silent discharge OGs at high frequency. Experimental results measured in the laboratory for two particular OGs are presented to validate the proposed model.  相似文献   

12.
Volume Dielectric Barrier Discharge (DBD) is nowadays considered the most effective way for ozone generation in the industry. Some papers were published only on surface discharge reactors applied for ozone generation. This article describes an experimental investigation for the comparison between these two reactor types of ozone generation. Two surface and volume DBD reactors of cylindrical shape were used in the same experimental conditions. Obtained results showed that although the majority of ozone generators are of volume discharge type, the surface DBD presents significant superiority in terms of ozone generation and energy efficiency.  相似文献   

13.
ABSTRACT

This experimental study extends prior studies to consider the influences of discharge polarity, current, relative humidity, air temperature, and wire diameter and material on ozone generation rate in two-stage, wire-plate indoor air cleaners. Promising methods of decreasing the quantity of ozone released into living and work spaces are identified. Use of positive corona discharge is imperative since ozone generation rates are nearly an order of magnitude higher with negative discharge. For a specific precipitator design, the most important parameter in predicting ozone generation rate is current level. Changes in temperature and relative humidity of the inlet air stream over the range of ambient conditions expected in typical homes have less impact. In the commercial air cleaner studied, a 40% reduction in current from 1.08 to 0.60 mA, reduces ozone generation rate by nearly 50% from 0.005 to 0.0025 mg s?1. This reduction in current reduces particle collection efficiency by 20%. An increase in relative humidity from 17 to 55% decreases ozone generation rate 17%. An increase in air temperature from 293 to 301K decreases ozone generation rate by 6%. Ozone production can be controlled by the selection of wire diameter and material. At a fixed voltage, use of 0.10 mm rather than 0.20 mm tungsten discharge wires reduces ozone generation rate by 40%. The accompanying reduction in current does not cause a reduction in collection efficiency as long as the voltage in the collection stage is held constant. The benefit of controlling ozone generation rate by selection of wire material is that the electrical characteristics of the air cleaner are not affected. With a positive corona discharge, ozone generation rate is decreased by 30% with copper wires and by 50% with silver wires as compared to the rate with standard tungsten wires.  相似文献   

14.
Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or ~40 kHz. The ozone production was highly dependent on the O2 flow rate and the discharge power. Furthermore, powerful ultrasonic irradiation at a fundamental frequency of ~30 kHz with the sound pressure level of ~150 dB into the discharge can improve the ozone production efficiency, particularly when operated at the frequency of 15 kHz at the flow rate of 15 L/min.  相似文献   

15.
The catalytic role of using inert gases to increase the efficiency and lower the power cost of producing ozone (O3) from high purity oxygen (O2) in a process incorporating an electrical discharge is demonstrated. Three inert gases (Ar, Ne, He) and N2 are individually mixed with O2 and the results presented. The increase in ozone production is partially attributed to the increase in electron density provided by the ionization of the inert gas in the discharge.  相似文献   

16.
The effect of (V)UV illumination at 172 run and 253.7 run on ozone formation with dielectric barrier discharges in air‐like mixtures of nitrogen/oxygen and argon/oxygen as function of the water concentration is presented. Although (V)UV at these wavelengths efficiently cleaves ozone, the ozone concentration in a combined (V)UV/dielectric barrier discharge in oxygen‐containing gases is reduced only very little. This corresponds to an enhanced concentration of atomic singlet oxygen, which, in presence of water, increases the production of hydroxyl radicals. This is confirmed by measurements of the removal rates of 2‐propanol and of its byproducts in dry and humid air in a combined (V)UV/dielectric barrier discharge treatment.  相似文献   

17.
Coplanar discharge is a new type of barrier discharge, and has some advantages for high-concentration ozone generation. In this article, basic parameters of coplanar discharge are clarified by experimental and theoretical approaches. Coplanar electrodes consist of many pairs of line electrodes printed on a glass plane, and are covered with dielectric layer. The discharge properties, ozone diffusion process, and surface reaction are discussed. Finally, the scaling rule of a coplanar discharge ozone generator is demonstrated by fabrication of a 3 kg/h ozone generator.  相似文献   

18.
This paper reports the ozone generation in pulsed multichannel dielectric barrier discharge. The influence of nitrogen addition (0.1%–10%) on ozone concentration and ozone generation efficiency in nitrogen–oxygen gas mixtures is studied. Results show that adding 0.1% N2 would not seriously increase the ozone production. Meanwhile, 1% N2 content exhibits the highest ozone production efficiency in low SIE (J/L, defined as the ratio of power to gas flow rate) region (0–200 J/L) while adding 0.3% N2 would lead to the highest ozone generation efficiency in high SIE region (300–800 J/L). The increase of ozone production induced by N2 addition is more significant in low SIE region compared with that in high SIE region. At 100 J/L, ozone production efficiency increases 26.9% to 201.6 g/kWh with 1% N2 addition when compared with that in oxygen. At 18 J/L, the observed maximum ozone generation efficiency reaches 252 g/kWh at 1.3 g/Nm3 with 1% N2 addition. An increase of ozone production can be obtained with 0.3%–2% N2 addition in all explored SIE ranges.  相似文献   

19.
A semi-empirical equation is derived to provide a correlation between the ozone generation rate of a negative wire-to-plate corona discharge in both dry and humid air and a series of design/operating parameters. A basic correlation is first derived by applying dimensional analysis on negative wire-to-plate corona discharge in dry air. Further development on the basic correlation is carried out by integrating the influence of humidity. The derived equation is validated by previously reported experimental data and numerical model. The new semi-empirical equation is comprehensive and useful in guiding the design/operation of indoor corona devices under actual ambient operating conditions.  相似文献   

20.
An ozone generator using a rotating electrode to improve ozone generation efficiency is proposed. The ozone generator electrode unit consists of a rotating electrode and fixed electrode. The rotating electrode has the grounded 36 pieces of tungsten wires fixed in parallel to the rotation axis on the rotating cylinder surface. A dielectric electrode is used as a fixed electrode located on the inside of the tube of the electrode unit. The width of the apparent discharge gap is 1mm. Alternating current with a frequency of 50 Hz is applied to the electrode unit. The rotation speed can be adjusted from 0 rpm to 1200 rpm by a variable speed motor. Oxygen gas is used as the material gas. Higher ozone concentration and higher ozone generation efficiency are obtained compared with that when the rotation speed is 0 rpm. The gas temperature is measured at the inlet and outlet of the ozone generator, and the rotation speed for the cooling effect is most effective at about 500 rpm. The maximum generation efficiency is estimated to be 61 g/kWh at 800 rpm, and this value is twice as large as in the case of 0 rpm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号