首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have studied the structure and thermo emf of a nanotubular carbon deposit formed in electric arc discharge plasma. The deposit contains flocky granules with dimensions of 15–20 μm within a 20–60 μm-thick layer on the substrate surface. This deposit is characterized by a sufficiently high thermo emf (60 μV/K) and electric conductivity (600 Ω−1 m−1).  相似文献   

2.
The films of higher manganese silicides (HMSs) obtained by the oblique deposition of manganese vapor onto silicon substrates possess a preferred texture and exhibit anisotropic thermo emf. The main parameters of IR detectors based on these HMS films have been studied. It is shown that the detectors with ∼5-μm-thick HMS films possess an electric resistance of ∼200 Ω and are capable of monitoring time variations of the incident radiation with a characteristic response time of ≤10−6s and a transformation coefficient of 500 μ V/W.  相似文献   

3.
Amorphous carbon (a-C〈N〉) films on glass substrates are obtained by magnetron sputtering of a graphite target in nitrogen. The temperature dependence of the electric conductivity (lnσ≈T 1/2 at temperatures T<280 K) of the films is typical of a granular structure. The results of measurements of the thermo emf, conductivity, and optical absorption of the a-C〈N〉 films suggest that the granular structure comprises nanodimensional clusters of γ-carbon phase with metallic conductivity distributed in a graphitelike carbon matrix. The concentration of such clusters in the matrix increases with the substrate temperature.  相似文献   

4.
The proton conductivity of barium-yttrium hydrocuprate HxYBa2Cu3O7+y (x≤2,−0.1≤y≤0.1) was determined for the first time. The proton conductivity (10−6 S cm−1 at 470 K, with an activation energy of −0.6 eV) accounts for 0.1% of the total dc conductivity. Owing to the proton conductivity of strontium cerate (HzSrCe0.9Y0.1O3, z<0.1) and hydrocuprate layers in the Pd/cerate/hydrocuprate/cerate/Pd sandwich structure, this heterogeneous system exhibits the properties of an electric accumulator with emf=0.6–1.2 V.  相似文献   

5.
Hierarchical metal nanostructures containing 1D nanobuilding blocks have stimulated great interest due to their abundant active sites for catalysis. Herein, hierarchical 4H/face‐centered cubic (fcc) Ru nanotubes (NTs) are synthesized by a hard template‐mediated method, in which 4H/fcc Au nanowires (NWs) serve as sacrificial templates which are then etched by copper ions (Cu2+) in dimethylformamide. The obtained hierarchical 4H/fcc Ru NTs contain ultrathin Ru shells (5–9 atomic layers) and tiny Ru nanorods with length of 4.2 ± 1.1 nm and diameter of 2.2 ± 0.5 nm vertically decorated on the surface of Ru shells. As an electrocatalyst for the hydrogen evolution reaction in alkaline media, the hierarchical 4H/fcc Ru NTs exhibit excellent electrocatalytic performance, which is better than 4H/fcc Au‐Ru NWs, commercial Pt/C, Ru/C, and most of the reported electrocatalysts.  相似文献   

6.
It is established that the transverse emf developed in an anisotropic thermoelement (temperature sensor) under conditions of a pulsed thermal load in the absence of an external electric circuit is proportional to a temperature difference between the front (exposed) and rear surfaces of the sensor. This result has been obtained assuming that the temperature distribution in the sensor is one-dimensional and the components of the thermo emf and electric conductivity tensors are independent of the temperature. The time of sensor heating, during which the temperature of the unexposed surface remains constant, is evaluated.  相似文献   

7.
Technological factors controlling the formation of the microtopography of the surface of graphitelike carbon films deposited from the plasma of a microwave gas discharge in ethanol vapor are established. Parameters of the deposition regime and the surface roughness influence the electric conductivity and the field emission properties of the films obtained by this method. Using graphitelike carbon films, an emission current density of up to 0.3 A/cm2 was obtained at an electric field strength in the gap of about 7 V/μm.  相似文献   

8.
Large-area patterned boron carbide nanowires (B4C NWs) have been synthesized using chemical vapor deposition (CVD). The average diameter of B4C NWs is about 50 nm, with a mean length of 20 ??m. The B4C NWs have a single-crystal structure and conductivities around 5.1 × 10?2 ???1·cm?1. Field emission measurements of patterned B4C NWs films show that their turn-on electric field is 2.7 V/??m, lower than that of continuous B4C NWs films. A single nanowire also exhibits excellent flexibility under high-strain bending cycles without deformation or failure. All together, this suggests that B4C NWs are a promising candidate for flexible cold cathode materials.   相似文献   

9.
The structure and thermo emf of nanotubular and fractal carbon layers deposited from an electric discharge plasma were studied. The thermo emf of such nanotubular and fractal deposits is almost tenfold higher as compared to that of polycrystalline carbon, which is explained by the nanostructural state of carbon in the deposits studied.  相似文献   

10.
The thermo emf in Czochralski grown silicon single crystals annealed at 450°C was experimentally studied in a range of pressures up to 16 GPa in a chamber with synthetic diamond anvils. There is a correlation between the curves of thermo emf versus pressure, the semiconductor-metal transition pressure, and the mechanical properties (microhardness, compressibility) of samples with various oxygen content. The values of thermo emf in the high-pressure metallic phases have been determined.  相似文献   

11.
Charge carrier density in bismuth-doped tellurium has been studied as a function of the dopant concentration in order to determine the boundary of the second phase formation in the Bi-Te system. All bismuthdoped tellurium samples, in contrast to the initial undoped material, exhibit hole conductivity. The hole density significantly increases with the dopant content and reaches a maximum value (2.1 × 1018 cm?3) at a bismuth concentration of 0.1 at. %, which corresponds to the limiting solubility. This conclusion fully agrees with the character of transformation of the temperature dependence of the thermo emf α of bismuth-doped tellurium, which shows a decrease in α for Y Bi > 0.1 at. % as a result of increasing contribution of the second phase (Bi2Te3) inclusions possessing electron conductivity.  相似文献   

12.
Nanowires (NWs) hold great potential in advanced thermoelectrics due to their reduced dimensions and low-dimensional electronic character. However, unfavorable links between electrical and thermal conductivity in state-of-the-art unpassivated NWs have, so far, prevented the full exploitation of their distinct advantages. A promising model system for a surface-passivated one-dimensional (1D)-quantum confined NW thermoelectric is developed that enables simultaneously the observation of enhanced thermopower via quantum oscillations in the thermoelectric transport and a strong reduction in thermal conductivity induced by the core–shell heterostructure. High-mobility modulation-doped GaAs/AlGaAs core–shell NWs with thin (sub-40 nm) GaAs NW core channel are employed, where the electrical and thermoelectric transport is characterized on the same exact 1D-channel. 1D-sub-band transport at low temperature is verified by a discrete stepwise increase in the conductance, which coincided with strong oscillations in the corresponding Seebeck voltage that decay with increasing sub-band number. Peak Seebeck coefficients as high as ≈65–85 µV K−1 are observed for the lowest sub-bands, resulting in equivalent thermopower of S2σ ≈ 60 µW m−1 K−2 and S2G ≈ 0.06 pW K−2 within a single sub-band. Remarkably, these core–shell NW heterostructures also exhibit thermal conductivities as low as ≈3 W m−1 K−1, about one order of magnitude lower than state-of-the-art unpassivated GaAs NWs.  相似文献   

13.
Li X  Meng G  Xu Q  Kong M  Zhu X  Chu Z  Li AP 《Nano letters》2011,11(4):1704-1709
We report on the controlled growth of germanium (Ge) nanostructures in the form of both nanowire (NW) and nanotube (NT) with ultrahigh aspect ratios and variable diameters. The nanostructures are grown inside a porous anodic aluminum oxide (AAO) template by low-temperature chemical vapor deposition (CVD) assisted by an electrodeposited metal nanorod catalyst. Depending on the choice of catalytic metals (Au, Ni, Cu, Co) and germane (GeH(4)) concentration during CVD, either Ge NWs or NTs can be synthesized at low growth temperatures (310-370 °C). Furthermore, Ge NWs and NTs with two or more branches can be grown from the same stem while using AAO with branched channels as templates. Transmission electron microscopy studies show that NWs are single crystalline and that branches grow epitaxially from the stem of NWs with a crystalline direction independent of diameter. As-grown NTs are amorphous but can crystallize via postannealing at 400 °C in Ar/H(2) atmosphere, with a wall thickness controllable between 6 and 18 nm in the CVD process. The yield and quality of the NTs are critically dependent on the choice of the catalyst, where Ni appears the best choice for Ge NT growth among Ni, Cu, Co, and Au. The synthesis of structurally uniform and morphologically versatile Ge nanostructures may open up new opportunities for integrated Ge-nanostructure-based nanocircuits, nanodevices, and nanosystems.  相似文献   

14.
Meng F  Jin S 《Nano letters》2012,12(1):234-239
Copper (Cu) nanowires (NWs) are inexpensive conducting nanomaterials intensively explored for transparent conducting electrodes and other applications. However, the mechanism for solution growth of Cu NWs remains elusive so far. Here we show that the one-dimensional anisotropic growth of Cu NWs and nanotubes (NTs) in solution is driven by axial screw dislocations. All three types of evidence for dislocation-driven growth have been conclusively observed using transmission electron microscopy (TEM) techniques: rigorous two-beam TEM analysis that conclusively characterizes the dislocations in the NWs to be pure screw dislocations along <110> direction, twist contour analysis that confirms the presence of Eshelby twist associated with the dislocation, and the observation of spontaneously formed hollow NTs. The reduction-oxidation (redox) electrochemical reaction forming the Cu NWs presents new chemistry for controlling supersaturation to promote dislocation-driven NW growth. Using this understanding to intentionally manipulate the supersaturation, we have further improved the NW growth by using a continuous flow reactor to yield longer Cu NWs under much milder chemical conditions. The rational synthesis of Cu NWs with control over size and geometry will facilitate their applications.  相似文献   

15.
A simple method to fabricate three-dimensionally (3-D) aligned thermoelectric nanowires attached polymer particle was demonstrated by combination of solution casting of thermoelectric nanostructures (e.g., tellurium nanowires (Te NWs)) on the surface of thermoplastic polymer (e.g., poly(methyl methacrylate (PMMA)) microbeads followed by hot compaction of thermoplastic matrix. The percolation threshold of composite with 3-D assembled Te NWs (i.e., 3.45 vol%) significantly was lower than that of a randomly dispersed Te NWs (i.e., 5.26 vol%), which resulted in an order of magnitude greater thermoelectric figure of merit (ZT of 2.8 × 10?3) compared to randomly dispersed Te NWs in PMMA matrix (ZT of 6.4 × 10?4) at room temperature by enhancing the electrical conductivity without increasing thermal conductivity.  相似文献   

16.
Zinc oxide nanowires (ZnO NWs) were successfully synthesized on the ITO/PET polymer substrates by a hydrothermal method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations were carried out to characterize the crystallinity, surface morphologies, and orientations of these NWs, respectively. The influence of NW surface morphologies on the optical and electrical properties of ZnO NWs was studied. The hydrothermally grown ZnO NWs with direct band gap of 3.21 eV emitted ultraviolet photoluminescence of 406 nm at room temperature. Field emission measurements revealed that the threshold electric fields (Eth, current density of 1 mA/cm2) of ZnO NWs/ITO/PET and ZnO NWs/ZnO/ITO/PET are 1.6 and 2.2 V/microm with the enhancement factors, beta values, of 3275 and 4502, respectively. Furthermore, the field emission performance of ZnO NWs deposited on the ITO/PET substrate can be enhanced by illumination with Eth of 1.3 V/microm and displays a maximum emission current density of 18 mA/cm2. The ZnO NWs successfully grown on polymer substrate with high transmittance, low threshold electric field, and high emission current density may be applied to a flexible field emission display in the future.  相似文献   

17.
Interface-induced effects and large specific area of heteronanostructures are attracting much attention due to applications in photocatalysis. In this work, ultrafine bismuth sulfide (Bi2S3) nanocrystalline-modified Fe-doped TiO2 nanotubes (NTs) were fabricated with facile methods. The effect of the ratio of Bi2S3 to the Fe-doped TiO2 NTs on the microstructural, optical, and photocatalytic properties of the NTs and hybrids was studied. The NTs showed an actual Fe content of ~ 2.93 at.%. The optical bandgap of the NTs and hybrids was ~2.90 eV and ~2.46–2.88 eV, respectively, and decreased with increasing Bi2S3/NTs ratio. The specific surface area of the NTs was ~333 m2 · g?1; whereas the hybrids showed obviously larger specific surface area of ~ 527–689 m2 · g?1 than the NTs because of well-controlled formation process of Bi2S3 nanoparticles. The sunlight-excited degradation experiments of dyes in the water indicated that the photocatalytic activity of the hybrids was higher than that of the NTs and increased with increasing Bi2S3/NTs ratio. Moreover, the degradation rates of two dyes at different initial pH values were very different. The high photocatalytic activity of the hybrids was mainly ascribed to the narrow bandgap, large specific surface area, and effective heterojunction.  相似文献   

18.
Dimensional confinement in silicon nanowires (NWs) is well-known for enhancing phonon scattering, thus leading to a pronounced reduction of thermal conductivity κ with respect to bulk material. The effect of confinement on phonon scattering in nanolayers (NLs), however, has not been fully understood. In this work, thermal conductivity on polycrystalline silicon NLs with roughened surfaces and thicknesses ranging from 30 to 100 nm has been experimentally investigated. For measurement purposes, the nanostructures were fabricated with a dedicated surface nano-machining process, thus producing vertical silicon nanostructures suspended on Al/Si electrodes on a silicon substrate, using SiO2 as a sacrificial layer. By designing such structures in a four-terminal configuration, their κ could be determined by the current-voltage method. Boron doped silicon NLs were examined, at resistivity ranging between 2 and 10 m $\Upomega$ cm. We found an increase of phonon scattering from the confinement, since κ decreased steadily with the thickness from values typical of thick films (around 30 W m?1 K?1) down to <15 W m?1 K?1. Compared to NWs, NLs had displayed figures of merit smaller by one order of magnitude. However, due to the larger filling factor, they were able of generating more than five times the electric power per area unit that could be obtained with high-density stacks of top-efficiency NWs.  相似文献   

19.
Kang J  Myung S  Kim B  Oh D  Kim GT  Hong S 《Nanotechnology》2008,19(9):095303
Although a directed assembly strategy has been utilized for the massive assembly of various nanowires and nanotubes (NWs/NTs), its application has usually been limited to rather small-diameter NWs/NTs prepared in solution. We report two complementary methods for the massive assembly of large-size ZnO nanowires (NWs). In the solution-phase method, ZnO NWs were assembled and aligned selectively onto negatively charged surface patterns in solution. In addition, the substrate bias voltage and capillary forces can be used to further enhance the adsorption rate and degree of alignment of ZnO NWs, respectively. In the direct-transfer method, a NW film grown on a solid substrate was placed in close proximity to?a?molecule-patterned substrate, and ultrasonic vibration was applied so that the NWs were directly transferred and aligned onto the patterned substrate. The solution-phase and direct-transfer methods are complementary to each other and suitable for the assembly of NWs?prepared in solution and on solid substrates, respectively.  相似文献   

20.
The first noncontact photoconductivity measurements of gallium nitride nanowires (NWs) are presented, revealing a high crystallographic and optoelectronic quality achieved by use of catalyst-free molecular beam epitaxy. In comparison with bulk material, the NWs exhibit a long conductivity lifetime (>2 ns) and a high mobility (820 ± 120 cm(2)/(V s)). This is due to the weak influence of surface traps with respect to other III-V semiconducting NWs and to the favorable crystalline structure of the NWs achieved via strain-relieved growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号