首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于ANSYS建立37Mn5钢φ200mm断面圆坯连铸过程中的凝固传热数学模型,并通过射钉试验及表面测温对模型的准确性进行了验证,模拟研究了拉速、过热度以及比水量对凝固终点、铸坯表面温度以及铸坯中心过热消散位置的影响,研究结果证明:比水量对铸坯表面回温影响最大,每增加0.1L·kg~(-1),铸坯表面回温增加10℃,而拉速对凝固终点及铸坯中心的过热消散的位置影响最大,拉速每增加0.1m·min~(-1),凝固终点及铸坯中心的过热消散的位置分别增加1.1m和0.8m,并从理论上验证了φ200 mm断面生产37Mn5拉速从1.4m·min~(-1)提高到1.8m·min~(-1)的可行性,另外考虑到37Mn5的高温热塑性特点及二冷冶金准则,针对铸坯存在的质量缺陷,优化二冷工艺制度,工业试验结果表明:低过热度(25℃以下),比水量为0.3L·kg~(-1),拉速从1.4m·min~(-1)提高到1.8m·min~(-1)时,铸坯低倍质量良好,无内裂纹以及中心缩孔,中心等轴晶率为35%,但过高的过热度(30℃以上)会存在中心缩孔。  相似文献   

2.
《炼钢》2017,(4)
针对Φ200 mm 37Mn5钢圆坯高拉速下铸坯存在的内部裂纹、中心缩孔与中心疏松等缺陷,结合生产实际分析得出过热度高、结晶器电磁搅拌强度偏小、二冷工艺及喷嘴布置不合适是引起铸坯质量问题的主要原因。通过建立经射钉及测温试验验证的凝固传热模型与采用高斯计测量电磁搅拌磁场的分布特征分别对二冷工艺制度和结晶器电磁搅拌参数进行优化,同时对二冷区喷嘴布置进行改进。结果表明:对于Φ200 mm断面37Mn5钢连铸拉速从1.4 m/min提高到1.8 m/min,铸坯内部质量明显改善,内部裂纹消失,中心缩孔和中心疏松均为0.5级,若过热度大于30℃,仍存在比较严重的中心缩孔。  相似文献   

3.
为改善20CrMnTi钢小方坯凝固组织,基于ProCAST软件中的CAFE模型,对其凝固组织进行数值模拟,研究了不同钢水过热度、铸坯拉速、二冷比水量对凝固组织的影响。模拟结果表明,降低钢水过热度、提高铸坯拉速、降低二冷比水量均可达到增大铸坯等轴晶率和细化晶粒的目的,其中过热度对其影响最大。过热度每降低10℃,等轴晶率平均增加3.7%;拉速每增加0.1 m/min,铸坯等轴晶率平均增加1.8%;比水量每降低0.1 L/kg,铸坯等轴晶率平均增加1.65%。生产应用表明,钢水过热度30℃时,当拉速由原2.2 m/min降低至2.1 m/min,二冷比水量由0.6 L/kg提高至0.7 L/kg,铸坯中心疏松明显减少。  相似文献   

4.
建立了34Mn5V钢Φ400 mm圆坯连铸过程中的凝固传热数学模型,运用该模型计算得到的二冷各区控制点的表面温度与现场实测结果一致。用该模型计算得出,钢水过热度对铸坯表面温度影响较小,拉速和二冷区冷却强度对铸坯温度影响较大。生产实践表明,当生产Φ400 mm铸坯的拉速达到0.4~0.6 m/min时,自动控制的二次冷却制度能满足工业连铸要求,可得到优质铸坯。  相似文献   

5.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

6.
《特殊钢》2017,(5)
试验用GCr15轴承钢的生产工艺为100 t BOF-LF-RH-250 mm×280 mm连铸坯-Φ70 mm轧材。用碳截面偏析检验、射钉试验及高倍检验等分析检测方法,研究了结晶器冷却水2 530 L/min,钢水过热度33~37℃,二冷比水量0.12 L/kg,M-EMS 530 A/2.5 Hz,F-EMS 400 A/3.0 Hz参数下,GCr15轴承钢连铸坯拉速0.52~0.58m/min对连铸坯轴承钢碳偏析、坯壳厚度及末端凝固位置和Φ70 mm轧材带状的影响。结果表明,随着连铸拉速的提升,铸坯的宏观碳偏析先呈现下降后呈现上升趋势,凝固末端位置后移,液相穴长度变长,拉速控制在0.55m/min,有利于降低铸坯的宏观碳偏析和轧材球化退火后的带状组织级别。  相似文献   

7.
在分析37Mn5钢(/%:0.34~0.39C,0.20~0.35Si,1.25~1.50Mn)凝固特性的基础上通过用ANSYS软件建立连铸圆坯凝固热-力耦合数学模型,对Φ210 mm连铸圆坯凝固过程进行模拟,分析了40 t中间包,拉速1.4 m/min,浇铸温度1531℃时,二冷水比水量0.58~0.78 L/kg和各段配置对铸坯表面温度、坯壳厚度、液芯长度和表面应力的影响。模拟结果表明,比水量每增加0.1 L/kg,铸坯表面约下降18℃,试验比水量变化对出口坯壳厚度、液芯长度和表面应力影响不显著,但原工艺配水量0.68 L/kg下二冷0段和1段之间空冷部位出现高达185℃急速回温,最大应力达6.41×107Pa,通过保持配水量0.68 L/kg不变,调整各段配水量使0~1段间回温降至123℃,最高应力降至4.53×107Pa,铸坯裂纹基本消失,表面质量显著改善。  相似文献   

8.
以钢厂断面尺寸为Φ800 mm圆坯Q355NE为研究对象,建立大圆坯传热模型,在不采用结晶器电磁搅拌的条件下,研究拉速和过热度对凝固过程的影响规律。结果表明:拉速对坯壳厚度、凝固终点位置和中心固相率的影响高于过热度,拉速每增加0.02 m·min-1,凝固终点后移2.6 m左右;过热度升高10℃,凝固终点后移0.21 m左右。实际生产中,二冷比水量0.18 L·kg-1、过热度25℃、拉速0.14 m·min-1时,出结晶器坯壳厚度超过43 mm,末端电磁搅拌充分发挥作用,铸坯中心疏松和中心缩孔较结晶器电磁搅拌(300 A/1.5 Hz)、二冷比水量0.18 L·kg-1、过热度25℃、拉速0.16 m·min-1工艺有所改善。  相似文献   

9.
Q345E钢(/%:0.13~0.17C,0.24~0.28Si,1.02~1.40Mn,0.015~0.040Al,≤0.015P,≤0.015S)的冶金流程为70 t转炉-LF-VD-Φ600 mm圆坯连铸工艺。通过0.08 L/kg比水量和0.18、0.20、0.22 m/min拉速条件下的凝固模拟计算,结合拉速0.22 m/min,过热度20℃,一冷4 600 L/min(进出水温差2.7℃),二冷L_1-38、L_2-6和L_3-5 L/min条件下的射钉试验,确定该拉速下Q345E钢Φ600 m/圆坯的凝固末端位置距弯月面22.4 m,在此基础上优化结晶器M-EMS\末端F-EMS组合电磁搅拌,调整连铸工艺,使大圆坯宏观碳偏析取得显著改善。结果表明,浇铸过热度、电磁搅拌参数是影响碳偏析的重要工艺条件;当过热度20~30℃、拉速0.22~0.24 m/min、M-EMS(200 A,2 Hz)、F-EMS(400 A,8 Hz)交替搅拌时,Q345E钢Φ600 mm断面碳极差≤0.04%C。  相似文献   

10.
建立了Q345E钢Φ600 mm大圆坯凝固传热模型,利用Procast软件对其连铸凝固过程进行了数值模拟,并通过射钉试验结果验证。研究结果表明:浇铸温度对铸坯的表面与中心温度以及固液相分布影响很小;拉速每增加0.02 m/min,铸坯表面温度无明显变化,糊状区向前移动,凝固末端离结晶器液面距离增加约1.75 m;二冷比水量每增加0.01 L/kg,其二冷区表面温度约降低30℃,糊状区向后移动少量,凝固末端后移0.3 m左右;适宜的工艺条件为浇铸温度1 539℃、拉速0.22 m/min、二冷比水量0.08 L/kg。实际生产的Q345E钢Φ600 mm大圆坯中心缩孔0.5级,中心疏松1.0级,碳偏析指数不大于1.09,完全满足标准要求。  相似文献   

11.
《特殊钢》2016,(4)
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m~3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m~3/h。  相似文献   

12.
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m3/h。  相似文献   

13.
建立了25MnSiV矩形连铸坯凝固组织数学模型,研究了拉速、过热度、二冷区给水量对连铸坯疏松缩孔的影响规律。结果表明,提高拉速和过热度均会增加铸坯疏松缩孔比例,而增加二冷区给水量能降低铸坯疏松缩孔比例,最佳工艺参数分别为拉速1.0 m/min、过热度20℃、二冷区给水量为最大给水量的60%。  相似文献   

14.
根据钢厂新建Φ600 mm圆坯连铸机的主要技术参数,建立柱坐标一维非稳态连铸坯凝固传热数学模型,运用有限差分法求解并编制相关程序,分析拉速、过热度、冷却强度对铸坯温度的影响,实现在给定水量下连铸坯温度场的计算。浇铸Φ500 mm轴承钢GCr15SiMn计算得出拉速每提高0.1 m/min,出结晶器处凝固坯壳厚度减薄约7.9 mm,凝固终点延长6.7 m。  相似文献   

15.
以某钢厂GCr15钢大方坯为研究对象,采用ProCAST软件建立凝固数学模型,研究了过热度、拉速和比水量对大方坯凝固过程的影响,并通过对铸坯中心固相率及液芯长度的分析,确定了最佳末端电磁搅拌位置,并优化了拉速。研究结果表明:过热度对铸坯凝固影响最小,随着过热度增加,铸坯表面温度升高,铸坯液芯长度和液相区长度均随之增加,而两相区长度则随之减小;拉速对铸坯凝固影响最大,拉速提高,铸坯表面温度、液芯长度、两相区长度、液相区长度均增大;比水量增加,铸坯表面温度降低,液芯长度减小;当比水量为0.29 L/kg时,过热度应控制在15~35℃,拉速需控制在0.46~0.49m/min,且最佳拉速为0.48 m/min。  相似文献   

16.
研究的重轨钢(/% :0, 68 - 0. 73C,0. 20~0. 30Si,l. 05 ~ 1.15Mn, ≤0. 015P, ≤O. 012S, ≤O. 003 5 Al,≤ O. 000 15[H], ≤0.006 0[N], ≤O, 002 0[0])的冶金流程为铁水脱硫预处理-120 t 转炉-LF-RH-280 nun x 380 mm 坯连铸。分析证实铸坯偏析是钢轨低倍检验和超声波探伤不合格的主要原因。试验研究了钢水过热度、拉速、结 晶器电磁搅拌、二冷水量和凝固末端动态轻压下对铸坯中心碳偏析的影响。通过采用优化的工艺措施:钢水过热 度15~30 拉速0.60 - 0. 75 m/min和恒拉速,结晶器电磁搅拌强度400 A,二冷比水量0.25 L/kg,轻压下6~7mm等,铸坯一般疏松≤1. 0级,中心疏松≤0. 5级,点状偏析≤0. 5级,等轴晶率≥37%,中心碳偏析指数0.94 ~ 1.06钢轨超声波探伤合格率提高至99. 3%以上。  相似文献   

17.
基于ANSYS软件建立了310 mm×360 mm断面大方坯连铸过程二维凝固传热数学模型,并采用窄面射钉试验及铸坯表面测温试验对模型的准确性进行了验证.通过模型研究了过热度、拉速和二冷比水量对铸坯中心固相率以及凝固坯壳分布的影响,并结合高碳耐磨球钢BU的高温拉伸试验结果,确定了最佳的拉速以及最优轻压下压下区间要求.通过工业试验对理论模型进行了验证,并分析研究了拉速对采用凝固末端电磁搅拌(F-EMS)以及凝固末端17 mm大压下量的轻压下技术生产310 mm×360 mm断面大方坯高碳耐磨球钢BU铸坯的偏析和中心缩孔的影响.结果表明:采用凝固末端电磁搅拌和轻压下复合技术,通过调整拉速优先满足轻压下压下区间要求,可显著降低中心偏析、V型偏析及中心缩孔,但如果仅达到凝固末端电磁搅拌位置要求时,则铸坯中心质量不会得到明显改善.拉速为0.52 m·min-1且轻压下压下区间铸坯中心固相率为0.30~0.75时,偏析和中心缩孔有很大程度的改善,不合理的压下量分配会引起铸坯出现内裂纹以及中心负偏析.   相似文献   

18.
为控制油井管用连铸圆坯的质量,基于薄片移动法建立了连铸圆坯凝固传热数学模型,并应用Procast软件的CA—FE模块对37Mn5钢Ф150mm圆坯凝固组织进行了模拟。中心等轴晶率模拟结果与工业试验检测结果相一致,据此,建立了柱状晶-等轴晶转变判据。基于此判据的中心等轴晶率预测结果表明,降低过热度、提高拉速和降低二冷零段...  相似文献   

19.
建立了大方坯传热的数学模型,通过现场射钉实验对数学模型进行了校正,并通过数学模型确定了凝固终点位置,研究了过热度、拉速及二冷比水量等工艺参数对大方坯凝固终点位置的影响。研究结果表明,过热度对铸坯的凝固终点长度、液相的终点长度和固液两相区的长度影响较小,之间呈正比例线性关系;拉坯速度对其影响非常显著,之间呈正比例线性关系;二冷比水量对其影响比较显著,之间呈反比例线性关系。  相似文献   

20.
以某钢厂X80钢板坯为研究对象,采用ProCAST软件建立凝固数学模型,模拟了不同连铸工艺条件下230 mm×1 280 mm X80管线钢板坯凝固过程中各点温度及凝固率的变化情况,研究了过热度、拉速和比水量对板坯凝固过程的影响。研究结果表明:过热度对铸坯凝固影响最小,随着过热度增加,铸坯表面温度升高,铸坯液相穴长度随之增加,而两相区则随之减小;拉速对铸坯凝固影响最大,拉速提高,铸坯表面温度、液相穴长度、两相区均增大;比水量增加,铸坯表面温度降低,液相穴长度减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号