首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

2.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

3.
方宇荣  陈正权 《特殊钢》2020,41(6):64-67
采用全流程系统取样的方式,对120 t BOF-LF-VD-CC工艺生产20CrMnTi齿轮钢中氧含量和夹杂物特性的演变规律进行系统的分析和研究。实验结果表明,采用铝脱氧和高碱度[(CaO)/(SiO2)=3.8~7]还原渣工艺,能使铸坯中T[O]低于20×10-6;中间包钢水中平均T[O]增加6×10-6;齿轮钢冶炼过程中,夹杂物完成了Al2O3→Al2O3-MgO→Al2O3-CaO-MgO的转变。  相似文献   

4.
综述了钢帘线和切割丝用钢"BOF-LF精炼-连续浇铸"工艺过程中夹杂物的控制技术。冶炼过程中通常采用Si—Mn脱氧,严格控制钢液中的Als及低碱度(CaO/SiO2≤1.0)渣系精炼等措施实现钢中夹杂物塑性化。生产实践表明,夹杂物塑性化并不完全等于低熔点化,一些厂家切割丝用盘条中MnO—SiO2-Al2O3系夹杂并未控制在低熔点区域,但轧制过程变形良好;生产过程中应避免由耐火材料引起的硬质外来夹杂;浇铸所涉及的Al2O3质耐火材料改用非Al2O3质材料可有效降低盘条拉拔过程中的断丝率。  相似文献   

5.
蒋育翔  焦兴利 《特殊钢》2011,32(1):36-39
X80微合金化管线钢冶炼的工艺流程为300 t顶底复吹转炉-钢包吹氩微合金化-LF-RH。通过转炉气动挡渣法控制出钢下渣量≤4 kg/t;钢包顶底吹氩搅拌6 min铝粒脱氧;控制LF顶渣CaO/Al2O3=1.7~1.9,碱度(CaO/SiO2) =4.5~6, (FeO+MnO)≤1.0%; RH喂FeCa线0.8 kg/t,使T[O]达到13×10-6,夹杂物尺寸≤10μm, ≤5μm夹杂物占98.93%,钢中Al2O3尖晶石夹杂物转变为CaO-MgO-Al2O3系三元夹杂。分析了冶炼过程夹杂物数量、尺寸形态和组成,得出管线钢夹杂物变性的规律。  相似文献   

6.
X80管线钢LF-RH二次精炼过程夹杂物行为及控制   总被引:1,自引:0,他引:1  
研究了210 t BOF-LF-RH-CC工艺流程生产X80管线钢(%:0.041~0.044C、0.15Si、1.78~1.80Mn、0.007~0.010P、0.000 8~0.001 2S、0.039~0.047[Al]s)时精炼过程中夹杂物的变化。在BOF出钢阶段采用加Al强脱氧(0.01%~0.02%[Al]s),LF精炼过程采用高碱度、强还原性精炼渣(精炼渣成分%:50~58CaO、7~10MgO、20~25Al2O3、4~7SiO2、0.5~1.4TFe),炉渣和钢液反应活跃,使得钢中Al2O3夹杂物很快向液态钙铝酸盐和部分液态CaO-MgO-Al2O3复合夹杂物转变。液态夹杂物通过碰撞、聚合、长大及上浮去除,提高了钢液的洁净度。浇铸前T[O]降到(7~10)×10-6,钢中夹杂物尺寸在3~5μm,试验炉次的热轧板内未发现大尺寸的低熔点钙铝酸盐类长条夹杂物。  相似文献   

7.
GCr15钢的生产流程为90t转炉-LF-VD-250mm×280mm方坯连铸-轧制。转炉出钢加铝脱氧,LF由高碱度渣[/%:55~58CaO,3~10MgO,12~16SiO2,16~24Al2O3,≤1(MnO+FeO)]精炼,LF喂Al后T[O]为14×10-6,LF终点T[O]10×10-6。采用SEM(扫描电镜)+EDS(能谱仪)的方法,研究了线材中超标DS类夹杂物的成分分布,发现夹杂物中心以复合氧化物CaO-MgO-Al2O3为主,外围包裹少量CaS;这些氧化物中,Al2O3含量约占65%,分布最为均匀;CaO含量约占20%,MgO含量约占15%。统计分析结果表明,VD真空处理后每平方毫米13μm以上大颗粒夹杂物数量增至7,软吹后降至2.1,线材中1/3大颗粒夹杂物来源于钢包渣带入。  相似文献   

8.
为了研究适合高洁净度高碳钢的LF精炼渣渣系,通过FactSage热力学软件计算精炼渣碱度(R)、(CaO)/(Al2O3)对精炼渣熔点的影响,得出最合适的精炼渣成分。根据热力学计算的精炼渣成分,降低原有渣系的钙铝比,并将优化的渣系成分用于65Mn钢工业试验。结果表明:优化后的精炼渣系成分质量分数为CaO52%~58%、Al2O328%~33%、SiO28%~12%、MgO5%~7%、R=4~6、(CaO)/(Al2O3)=1.5~2;使用该渣系进行工业试验,LF出站时的T.[O]可达7×10-6~13×10-6,RH出站时的T.[O]可达6×10-6~12×10-6;钢中全氧质量分数基本可控制在10×10-6内;65Mn钢卷中的B类细系夹杂均不大于1级,达到高级优质钢要求。  相似文献   

9.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

10.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34 Al2O3,38.42~38.68 CaO,14.20~18.38 SiO2,8.50~10.72 MgO,0.82~0.89 FeO,0.27~0.33 MnO,0.69~0.74 S,0.66~0.75TiO2,(CaO)/(SiO2)=2.09~2.72,(CaO)/(Al2O3)=1.04~1.40),LF终点T[O]为0.0012%~0.0019%,T[N]为0.0043%~0.0050%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al2O3)和钙镁铝尖晶石氧化物(CaO·MgO·Al2O3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

11.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

12.
分析了“BOF-RH-CC”和“BOF-LF-CC”两种工艺流程生产的ML08Al钢中非金属夹杂物类型、数量密度及总氧变化。结果表明,两种流程转炉脱氧合金化后钢中非金属夹杂物主要为Al2O3;采用“BOF-LF-CC”流程,LF精炼结束钢中部分非金属夹杂物由Al2O3转变为Al2O3·CaO和Al2O3·MgO;而采用“BOF-RH-CC”流程,RH真空后钢中非金属夹杂物仍然以Al2O3为主。转炉出钢脱氧合金化后,钢水中总氧含量27.8×10-6~31.5×10-6,经过LF精炼后,总氧含量为20.2×10-6~22.5×10-6,而经过RH处理后,总氧含量为14.7×10-6~15.3×10-6。LF精炼和RH真空处理对夹杂物数量的去除率分别为49.6%和80.9%。因此,“BOF-RH-CC”工艺流程生产的ML08Al钢水洁净度优于“BOF-LF-CC”工艺流程生产的钢水。  相似文献   

13.
通过50 t EAF配加30~40 t铁水和12~16 t优质废钢,EBT无渣出钢,加150~200 kg钢芯铝预脱氧,LF用SiC扩散脱氧,控制精炼渣碱度4.0~5.9, VD前后软吹氩、连铸保护浇铸和电磁搅拌等工艺措施,GCr15轴承钢轧材中的氧含量为8×10-6~9×10-6。分析结果表明,LF前至VD后钢中夹杂物尺寸一般≤10μm,最大尺寸40μm,大部分夹杂物尺寸为3~6μm; LF前主要夹杂物为Al2O3,镁铝尖晶石,硫化物,Cr2O3, TiO2; VD前后为镁铝尖晶石,CaS和MgO。  相似文献   

14.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

15.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

16.
采用MoSi2电阻炉在MgO质坩埚内进行了精炼渣成分(%:47~64CaO、13~23SiO2、15~25Al2O3、5~10MgO、0~8CaF2;CaO/SiO2=2.0~4.5)对0.95%C-1.50%Cr GCr15轴承钢中氧含量和夹杂物的影响的实验研究。实验中发现,随精炼渣碱度CaO/SiO2由2增加至4.5,钢液中的终点全氧含量由20×10-6降至11×10-6,夹杂物的总数量、总面积和平均半径减小。适当提高Al2O3含量或添加CaF2,减少MgO含量,可以显著提高炉渣吸附夹杂物的速度和能力。低碱度渣精炼的钢液中夹杂物成分含有≥20%SiO2,塑性较好,夹杂物的尺寸为15~20μm。高碱度渣精炼的钢液中典型的夹杂物是氧化铝和铝镁尖晶石等脆性夹杂物,尺寸≤5μm。  相似文献   

17.
冯焕林  刘承志 《特殊钢》2007,28(6):49-50
通过预处理铁水-75 t K-OBM-S-VOD-LF流程生产0Cr18Ni9纯净不锈钢。0Cr18Ni9纯净钢在LF精炼过程中,当底吹氩搅拌功率由20~40W/t降至13~21W/t,并按Ca/Al≈0.1喂入适量Ca-Si线,钢中氧含量和Al2O3含量分别降至30×10-6和5×10-6以下;金相法检验结果表明,0Cr18Ni9纯净钢板坯中夹杂物总量降低40%,≥20μm的夹杂降至5%以下。  相似文献   

18.
通过LF精炼和连铸过程钢水和炉渣取样,对3炉60钢冶炼各个阶段的T[O]显微夹杂物的数量、尺寸及类型的变化进行了系统研究。结果表明,在LF进站时,3炉60钢中T[O]为0.007 0%左右;从LF进站→钙处理后→软吹结束→中间包浇注→铸坯,3炉60钢中T[O]总体呈现缓慢降低的趋势,其铸坯中T[O]降到0.003%以下。LF进站时,3炉60钢中夹杂物以硅锰脱氧产物SiO2-Mn0-(Al2O3)复合夹杂为主;经钙处理后,其钢中夹杂物转变为CaO-SiO2-Al2O3-Mg0系复合夹杂,该复合夹杂物的主要成分为CaO+MgO 20%~40%,SiO2 20%~40%,Al2O3 30%-50%。由于中间包浇注过程钢液存在明显二次氧化,导致60钢中间包内钢水T[O]和二次氧化产物SiO2-MnO-(Al2O3)夹杂数量明显增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号