首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mg2 Si-matrix thermoelectric material was stnthesized by low temperature solid-state renc-tion.This paper studies the effects of holding time and reaction temperatare on the particle size and the properties of the material, and also studies effects of doping elemental Sb, Te and their doping seqence on the properties of the materiol. The result shows that excessirely high temperature and elongated holding time of solid-state reaction are harmful, there is a range of partiele size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.  相似文献   

2.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained MgESi phase with fully relative density.  相似文献   

3.
Preparation of Ti3SiC2 with Aluminum by Means of Spark Plasma Sintering   总被引:1,自引:0,他引:1  
Polycrystalline bulk Ti3SiC2 material with a high purity and density was fabricated by spark plasma sintering from the elemental powder mixture with starting composition of Ti3Si3Si1-xAlxC2 , where x = 0. 05 -0.2. X-ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples show that a proper addition of aluminum promotes the formation, and accelerates the crystal growth rate of Ti3SIC2, conse-quently results in a high purity of the prepared samples. The synthesized Ti3 SiC2 is in plane-shape with a size of about 10- 25μm in the elongated dimension. Solid solution of aluminum decreases the thermal stability of Ti3SiC2, and lowers the temperature of Ti3SiC2 decomposeing to be 1300 ℃ .  相似文献   

4.
The precursor with TiC0.7N0.3@WO3-MO3 microspheres were prepared by a novel method from the WO3-MoO3 sol dipping. Subsequently, TiC0.7N0.3@WC-MoC2 core-shell structural microspheres were successfully obtained by carburizing the precursor at 900 °C in a flowing mixture of CH4 (20 ml·min-1) and H2 (200 ml·min-1) for 2 h. Then TiC0.7N0.3@WC-MoC2-15Co cermets were prepared utilizing the core-shell powders by spark plasma sintering (SPS). Powders of the precursors with TiC0.7N0.3@WO3-MO3 microspheres, TiC0.7N0.3@WC-MoC2 microspheres and TiC0.7N0.3@WC-MoC2-15Co cermets were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The obtained TiC0.7N0.3@WC-MoC2 microspheres have a dense WC-MoC2 coatings shell. The thickness of the shell could be easily controlled by adjusting the number of sol dipping cycles. It was found that the TiC0.7N0.3@WC-MoC2 microspheres were more beneficial to fabricate the "core-rim" structures by SPS.  相似文献   

5.
A ternary-layered carbide Ti2AlC material could be synthesized by spark plasma sintering(SPS) technology using elemental powder mixture of Ti, Al and active carbon. By means of XRD and SEM, phases were identified and microscopically evaluated. The experimental results show that the main phase in the product was fully crystallized Ti2AlC with small particle size when sintered at 1200℃. The synthesis temperature of SPS was 200-400℃ lower than that of hot pressing (HP) or hot isostatic pressing (HIP). Through thermodynamics calculations, the mechanism of Ti2AlC was studied by calculating changes of Gibbs free energy of reactions.  相似文献   

6.
In order to unclose the dynamics of SPS densification, a special sintering sample (Cul Ti wires compact) was designed. Characters of the shrinkage rates during sintering process and mierostructures of products fabrieated by the spark plasma sintering( SPS ) and hot-press .sintering were investigated. The experimental results reveal that a higher temperature field is formed at the connected area and conductive net of the compact. These high-temperature parts deformed more easily than other parts, which is believed to be the main cause of SPS fast densification, according to a hard-core and soft-hell material model.  相似文献   

7.
The spark plasma sintering (SPS) technique was introduced into the field of NdFeB preparation due to its own advantages. High property NdFeB magnets with fine grains were prepared by SPS method. The corrosion behaviors of SPS NdFeB were studied by electrochemical measurements and 92% RH hyther tests at 353 K. The results were compared with those of the traditional sintered NdFeB magnets. It shows that both the SPS NdFeB and the traditional sintered NdFeB have good corrosion resistance in alkaline environment due to surface passivation; while, the fine grain microstructure of SPS NdFeB results in a more homogeneous phase com-position distribution and thus reduces the electrochemical inhomogenity between the ferromagnetic phase and the Nd-rich inter-granular phase in the magnet. Therefore, the SPS NdFeB exhibits better corrosion resistance than the traditional sintered NdFeB in neutral and weak acidic environment.  相似文献   

8.
W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1 230-1 300 ℃ for 10 min and under a pressure of 30 MPa. By using high energy milling, particles containing very fine tungsten grains embedded in copper, called composite particles, could be produced. The W grains were homogeneously dispersed in copper phase, which was very important to obtain W-Cu alloy with high mechanical properties, fine and homogeneous microstructure. The microstructure and properties of W-15Cu alloys prepared by SPS processes at different temperature were researched. The results show that W-15Cu alloys consolidated by SPS can reach 99.6 % relative density, and transverse rupture strength (TRS) is 1 400.9 MPa, Rockwell C hardness (HRC) is 45.2, the thermal conductivity is 196 W/m-K at room temperature, the average grain size is less than 2 μm, and W-15Cu alloy with excellent properties, homogeneous and fine microstructure is obtained.  相似文献   

9.
Various parameters in spark plasma sintering(SPS),such as sintering temperature,holding time,heating rate,and pressure,were adopted to investigate their effects on the densification of pure SnO2 power.The obtained experimental data show that the SPS process enhances densification.The high-density undoped SnO2 ceramics (96.6% of theoretical) was obtained at much lower temperature (1000℃),within a much shorter time,compared to the conventional sintering process.The high-density undoped SnO2 ceramics (96.6% of theoretical) were obtained by SPS,under the condition of temperature:1000℃,pressure:40MPa,heating-rate:200℃/min,and holding time:3min  相似文献   

10.
The single-phrase Ba(Mgl/3Nb2/3)O3(BMN) powder was saccessfully prepared by the KCImolten salt synthesis(MSS) method. The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method. The average particle size (APS) was about 0.91,u.m at 900℃ and increased with increasing synhesis temperature. Based on the APS, the activation energy for particle growth in theMSS, whose value was 64. 1kJmol^-1.was attained. The sinterability of the powder prepared by MSS method wasbetter than that pretared by solid-phase method.  相似文献   

11.
The influence of Mo on the microstructure, bending strength and HV of Ti/Al2O3 composite was studied, and the influence mechanism was analyzed. The results indicate that after the addition of Mo, the composite organization is finer and phases distribution is better-proportioned which make the microstructure denser, the bending strength and HV of composite are also increased to a degree. But the bending strength increases first then decreases with the increasing of Mo content, so the appropriate Mo content for the Ti/Al2O3 composite is to be further confirmed. WANG Zhi: Born in 1962 Funded by Natural Science Foundation of China (No. 50232020) and Natural Science Foundation of Shandong Province (No. 2002F21)  相似文献   

12.
A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16...  相似文献   

13.
机械活化Fe-Al粉在SPS烧结条件下的相变特征   总被引:1,自引:0,他引:1  
采用机械活化-放电等离子烧结(MASPS)方法制备FeAl金属间化合物,利用差热分析仪、X射线衍射、扫描电镜和能谱对烧结过程相的变化、组织形貌和反应过程进行了研究,发现在500℃时,Fe与Al还是以单质形式存在,600℃时,单质Al消失,并伴随有Fe2Al5的生成,700℃时有FeAl生成,在900℃时则只有FeAl.采用该种方法可以快速原位制得FeAl金属间化合物.  相似文献   

14.
Bulk samples of quasi-binary compounds in the Sn(Pb)Te-Bi2Te3 system were prepared by solvothermal method followed by a sintering procedure of compacted pellets. The formation mechanism of the precursor powders, microstructure and thermoelectric properties of the final bulk samples were studied.  相似文献   

15.
Fe-6.5 wt % Si composite compact was fobricated by spark plasma sintering (SPS) . Mechanical alloying( MA )was used to prepare Fe-Si composite powders. The composite powders were sintered by SPS at elevsated temperature from 500℃ to 700℃ . The experimental results indicate that the non-equilibrium state of composite Fe-Si is preserved in the compact. The density of the bulk rises with the increasing temperature and there is no diffusion of silicon and iron in the interface.  相似文献   

16.
Powder of Ti-46at%Al alloy was synthesized through mechanical activation(MA) and then sintered and concurrently consolidated in a short sintering time of 900 s by using a spark plasma sintering(SPS) process. The XRD and SEM profiles show that the microstructures of TiAl alloys contained γ TiAl and small amount α-2 Ti3Al phase, whose amount can be controlled by the sintering temperature. The compacts retained the original fine-grained fully densified bodies by avoiding an excessively high sintering temperature. The alloys sintered at higher temperature with this process showed a coarser microstructure. So it is possible to produce dense nanostructured TiAl alloys by mechanically activated spark plasma sintering (MASPS) within a very short period of time.  相似文献   

17.
Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600℃. Its sinterability is improved at a temperature of 620℃ whereas sintering temperatures higher than 620℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-1Zr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.  相似文献   

18.
The manufacture process of 8 mol% Y2O3 stabilized ZrO2 ( YSZ ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press, and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃ . The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97% , with little and small pores in the uniform microstructure.  相似文献   

19.
Cr-doped Li3V2(PO4)3 cathode materials Li3V2−x Cr x (PO4)3 were prepared by a carbothermal reduction(CTR) process. The properties of the Cr-doped Li3V2(PO4)3 were investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM), and electrochemical measurements. Results show that the Cr-doped Li3V2(PO4)3 has the same monoclinic structure as the undoped Li3V2(PO4)3, and the particle size of Cr-doped Li3V2(PO4)3 is smaller than that of the undoped Li3V2(PO4)3 and the smallest particle size is only about 1 μm. The Cr-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra(EIS). The optimal doping content of Cr was that x=0.04 in the Li3V2−x Cr x (PO4)3 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Cr-doping. The improved electrochemical performances of the Cr-doped Li3V2(PO4)3 cathode materials are attributed to the addition of Cr3+ ion by stabilizing the monoclinic structure. Funded by the Guangxi Natural Science Foundation(No. 0832259) and the National Basic Research Program of China (No. 2007CB613607)  相似文献   

20.
92WC-8Co puwder mixture with superfine-tungsten carbide was respectively sintered by spark plasma sintering( SPS ) and sintering isostutic pressure (SIP). Complete dense samples with 200 nm WC grains and 94.2HRA hardness were prepared by spark plasma sintering at 1 150 ℃ and under 4.5 kN for 5 minutes. SIP was carried out at 1 400 ℃ for 30 minutes with a result of 300-400 nm WC grains and 93 HRA hardness. The results show that sintering temperature is greatly decreased by SPS, sintering time is largely shortened and WC grain growth is effectively retarded. Micropores and drawb(wks in superfine-cemented carbide made by SPS are greatly declined, which is very useful to improving nwehanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号