首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为研究地铁列车在车辆段不同区域引起的上盖建筑振动问题,对广州某车辆段试车线,咽喉区及其上盖建筑进行现场振动测试,分析车辆段各区域车致振动特性及传递规律。分析结果表明,轨旁源强振动的主频随车速增加而增大,咽喉区15 km/h、试车线40和60 km/h工况的主频分别为31.5、40和50 Hz,试车线源强的振动能量要大于咽喉区。由于梁和楼板的阻抗作用,振动总能量在向上传播的过程中逐渐衰减,不同传递路径对不同频段振动的衰减作用不尽相同。建筑物内振动主频主要受楼板固有频率影响较大,主要集中在40~50 Hz范围。  相似文献   

2.
基于广州某车辆段的现场实测,分析了列车运行引起试车线、咽喉区、检修线区域的振动特性差异,总结了三类区域振源的衰减规律,并用统计学方法对比各组测试数据的离散特性,最后对车辆段内各区域进行了环境影响评价。研究结果表明:试车线引起地面垂向振动的主要频率为60~80 Hz,咽喉区地面垂向振动主要频率为50~60 Hz,库内检修线地面垂向振动主要频率为20~40 Hz;从各工况Z振级拟合曲线可以得出,试车线列车荷载引起的近地点振源强度最大,咽喉区次之,检修线最小;在咽喉区,相对于采用混凝土轨枕的轨道,采用聚氨酯轨枕的轨道引起地面振动明显增大且衰减较慢,轨道结构及道床应进行减振优化。按照GB 10070-88标准,试车线距振源5 m内的振动超过限值,咽喉区距振源10 m内的振动超过限值,而检修线在2.5 m外区域的振动均满足限值要求。  相似文献   

3.
何卫  谢伟平 《振动与冲击》2016,35(8):132-137
对车辆段内咽喉区、试车线和运用库的地铁列车荷载进行了实测,获得了其时频特性。基于不同线路条件、行车速度下的实测结果,分析了地铁列车荷载特性的主要影响因素。研究结果表明:地铁列车通过时,咽喉区轨枕的铅垂向加速度幅值为10~15m/s2,荷载以高频成分为主,主频段为60~150Hz;试车线轨枕的铅垂向加速度幅值为5~6m/s2,荷载主频段为60~100Hz;运用库的振动量值较小,实测的铅垂向加速度幅值为1~2 cm/s2,荷载的主频段为30~50Hz。对地铁车辆段列车,与行车速度相比,列车荷载振动量值对线路的平顺度更为敏感。  相似文献   

4.
为研究地铁列车进出车辆段对上盖物业振动的影响,先结合两个实际工程,对武汉某车辆段和宁波某车辆段内运用库列车振动荷载进行现场实测,并对两车辆段内运用库列车振动荷载进行对比分析,探讨车辆段内运用库列车振动荷载特性。然后改善了基于弱振情况下结构精细化有限元模型构建方法和荷载输入方法,并基于实测数据验证了其合理性。最后建立了武汉某车辆段上盖物业精细化有限元模型,计算分析上盖物业的振动响应。计算结果表明:地铁列车进出车辆段引起上盖建筑物的振动高频成分较丰富,其主频率在40Hz附近,列车振动荷载特性决定了建筑物内振动的频域分布;建筑内楼板跨中各方向振级沿高度方向的变化是不同的,铅垂向Z振级沿楼层的上升呈现先减小后增大的特点,而在水平方向振级总体上呈现随楼层增大而增大的特点。本文的研究成果可为精确预测、分析和评价地铁车辆段上盖物业振动舒适度提供基础。  相似文献   

5.
冯青松  余超  唐柏赞  周涛 《振动与冲击》2023,(9):304-311+321
为研究地铁列车在双层车辆段运行引起的上盖建筑振动及室内结构噪声特性,以国内某双层车辆段上盖物业工程为研究对象,采用现场实测和数值模拟相结合的方法,系统分析了双层车辆段上盖建筑振动与辐射二次结构噪声传递规律。基于大地-车辆段-上盖建筑有限元模型,分析了列车荷载作用下,运用库上盖建筑的振动传递特性,再利用声传递向量法分析了上盖建筑室内结构辐射噪声及其特性,最后对室内各板件的噪声辐射贡献度及吸声平板降噪效果进行了研究。分析结果表明:由于高频振动经过土体衰减迅速,在80 Hz以上频段,二层行车引起的上盖建筑底层振动显著大于一层行车;运用库车致上盖建筑振动在第10层衰减至最低水平,随着楼层的继续增加,振动出现放大现象;在40 Hz处天花板和地板对卧室场点声学贡献度最大,其中在顶层采用吸声材料后的降噪效果最为明显。  相似文献   

6.
实测广州地铁3号线厦滘车辆段咽喉区直、曲线段列车运行引起的周围地面振动影响,分析列车引起地面振动加速度在时、频域内的传播规律。结果表明,咽喉区直线段在轨道35 m范围内,地面竖向振动加速度级为72~95d B,略大于水平振动加速度级62~95 d B;咽喉区曲线段在轨道25 m范围内,地面竖向振动加速度级为70~98 d B,略小于水平振动加速度级80~98 d B;对地铁车辆段咽喉区临近的环境振动评价时,应同时考虑水平、竖向振动影响;中高频振动随距离增加衰减速度较低频快,咽喉区列车运行引发的振动传递到临近建筑物时主要频率成分为4~60 Hz。建议在车辆段减振措施设计时应重点考虑中低频振动的减振方案;在路基外侧沿轨道方向结合排水设施设置明沟利于减弱车辆段列车运行引发的振动传播。  相似文献   

7.
针对地铁车辆段及上盖建筑振动控制难题,基于周期结构带隙理论提出周期性桩基础隔振措施,通过开展行车条件下现场测试获得车辆段及上盖平台振动响应,以此为基础建立和校核动力有限元模型,并拓展建立上盖建筑振动计算模型,分析周期性桩基础对上盖建筑的隔振效果。研究发现:(1)实测振动向上盖平台传播分频衰减量约为20 dB~50 dB之间,上盖平台及建筑振动显著频段在25 Hz~50 Hz;(2)上盖建筑部分房间预测值超过限值3 dB~6dB,采用周期性桩基础后可实现设计带隙范围内63 Hz处最大9 dB的分频插入损失以及7 dB的最大Z振级插入损失;(3)周期性桩基础可有效控制上盖建筑10 Hz以下低频振动,最大可降低16 dB。研究成果可为车辆段及上盖建筑振动控制提供一种新的方法和某种地层条件下的具体设计参数。  相似文献   

8.
随着城市轨道交通的快速发展,地铁运行时产生的振动所引起沿线建筑物室内振动与二次结构噪声问题引起人们的广泛关注。基于某城市轨道交通沿线6层居民楼1楼现场测试,对不同扣件工况下地铁沿线敏感建筑物的室内振动与二次结构噪声问题进行测试与分析。研究表明:地铁沿线建筑物室内各振动、噪声测点峰值频率基本一致,在扣件A工况下峰值频率约为63 Hz,替换为刚度较低的扣件B后,峰值频率在40 Hz~50 Hz左右;采用刚度较小的扣件有利于室内振动与二次结构噪声的降低;虽然所测得的不同测点峰值频率一致,但振级和声压级大小有所不同,基本呈现出振级与声压级随着与地铁线路距离的增加而减小的规律。  相似文献   

9.
针对地铁车辆段上盖物业存在的振动舒适度问题以及缺乏相应有效减振措施的现状,开发了一种新型隔振支座来减小竖向列车振动。介绍了支座的结构构造及特点,在理论上提出设计方法;以某地铁车辆段工程为背景,通过数值模拟,对比分析了上部结构在隔振前后的动力响应,并对支座的减振效果进行评价。结果表明:隔振后,上部结构除在竖向一阶自振频率5.44 Hz和楼板局部模态频率16 Hz附近出现振动放大现象外,在其他频段的振动均得到明显降低,且隔振结构的各层Z振级均小于原结构,最大差值达12.1 dB;隔振支座对10 Hz以上频段的减振效果显著,其1/3倍频程振级的插入损失达20 dB,Z振级的减小量可达10 dB。  相似文献   

10.
鉴于地铁运营引发隧道及地层沿线路纵向的振动水平及特性不甚明确,应用薄片有限元-无限元耦合模型对地铁列车运营引发隧道基底、隧道壁及地表在垂直于线路的水平方向、铅垂方向及线路纵向三个方向上的振动响应进行高精度分析及比较。分析结果表明:(1)地铁列车运营引发横向、垂向及纵向三个方向6 Hz以下的低频振动在地表均衰减得极其缓慢,且地表三个方向的振动速度、加速度响应具有相似的频率成分;(2)列车运营引起隧道壁的纵向振动响应在1~100 Hz频段内较小,在该频段内的大部分频率点处,其响应甚至小于地表的纵向振动响应;(3)在隧道基底及隧道壁,由列车运营引发的纵向振动响应在1~100 Hz频段以内显著小于由其引发的垂向振动响应,但在地表,由列车运营引发的纵向振动响应具有同横向、垂向响应相当的量值。  相似文献   

11.
在列车正常运行条件下对某地铁曲线路段钢弹簧浮置板道床、科隆蛋和普通扣件轨道结构段的隧道壁振动和地面垂向振动进行现场测试,通过时域和频域分析对比地铁经过时不同轨道结构段振动从隧道壁传到地面以及地面垂向振动随距离的传播规律。结果表明:振动从隧道壁传至地面时200 Hz~500 Hz频段衰减较快,且地面垂向振动主频在100 Hz以内,隧道壁振动主频在300 Hz以内;钢弹簧浮置板道床和科隆蛋结构段的地面垂向振动随着离开线路中心线距离的增加而减小;在普通扣件结构段距线路中心线30 m左右处存在一个振动放大区;列车经过时轨道线正上方0~30 m范围内垂向振动的峰值频率主要在40 Hz至63 Hz。该测试方法和研究结果可为地铁线路设计提供相应参考。  相似文献   

12.
以西安某拟建数据中心为例,开展地铁列车运行对数据中心机房设备的振动影响评价。以“振源-传播途径-受振体”为基线,采用实测与数值计算相结合的研究方法。首先,开展场地自由衰减特性测试,获取地铁列车振动沿场地的传播规律;其次,在拟建建筑物场地边界距离地铁线路最近处布置测点,获取过车时的振动响应;然后,建立拟建建筑物结构有限元模型,获取其主要动力特性;最后,以场地实测加速度作为输入,采用一致激励法进行结构的车致振动响应计算,并对建筑物内精密设备的振动影响进行预测与评价。研究表明:(1)地铁列车运行时该数据中心机房设备振动达标(;2)地铁列车振动主频集中在31.5 Hz~80 Hz;在31.5 Hz以下的中低频段,场地表现出明显的整体振动特点;在31.5 Hz以上的中高频段,地面高频振动分量随距离迅速衰减(;3)会车工况与近轨工况地面监测结果接近,说明近轨列车振动能级显著大于远轨,会车时振动能量较近轨列车增加不明显。研究思路可为此类结构的振动分析和减隔振设计提供参考。  相似文献   

13.
近年来,随着地铁建设的迅速发展,地铁运行时所产生的振动对邻近建筑室内的二次结构噪声影响逐渐引起人们的关注。为研究室内二次结构噪声数值预测方法,以北京地铁某正线邻近二层音乐排练厅为例,首先对建筑墙、楼板的振动及室内噪声状况进行多点同步详细测试,通过实测数据分析得到地铁运行所致建筑室内振动及二次结构噪声特性;然后采用大型有限元软件Ansys建立隧道-岩土-建筑-声场三维精细化数值仿真模型,对地铁列车通过时的室内二次结构噪声进行仿真计算,并与实测数据进行对比分析。结果表明:地铁列车运行引起的建筑室内二次结构噪声在63 Hz处出现峰值;在100 Hz以下频率范围内仿真结果与实测结果吻合较好;受模型网格划分尺寸影响,100 Hz以上振动和二次结构噪声数值计算结果小于实测值,考虑到地铁运行引起的振动频率主要分布在1 Hz至100 Hz范围内,其对100 Hz以上的振动及二次结构噪声影响相对较小,因此可认为所采用的数值计算方法是科学可靠的,可为类似地铁沿线建筑室内二次结构噪声预测评价提供参考。  相似文献   

14.
以成灌快铁安德站为工程背景开展现场试验,实测了轨道梁、站台、候车大厅和办公室区域的振动加速度和声压,并对实测信号进行时域和频域分析。采用数值方法在频域内分析了轨道梁振动、桥墩动反力、站房振动和室内二次辐射噪声,并将计算结果与实测值进行对比。结果表明:当列车以速度190 km/h通过车站时,轨道梁振动的优势频段为40~80 Hz,竖向振动加速度峰值小于规范限值;办公室和候车大厅地面振动的优势频段为20~100 Hz,振级接近80 dB;站台处、办公室内和候车大厅内噪声的优势频段分别为300~2500 Hz、40~63 Hz和20~100 Hz,办公室内和候车大厅内的低频噪声远远超出身心舒适度限值;桥墩竖向动反力的优势频段为25~63 Hz,是引起办公室和候车大厅地面振动的主要原因;站房–土体耦合有限元模型和内部声辐射边界元模型可以较好地模拟站房振动及二次辐射噪声。  相似文献   

15.
地铁对周边建筑物振动影响分析   总被引:8,自引:5,他引:8  
建立了土层系统-建筑物二维共同作用有限元模型,采用Newmark隐式逐步数值积分法,从地铁列车荷载频谱特征和场地土层类型角度,分析了由地铁运行所诱发的周边建筑物振动响应规律。分析表明,在同一频率地铁振动荷载影响下,同一建筑物各楼层振动响应水平基本相同,上部楼层的振动仅比下部楼层振动有小幅上升;地铁低频段荷载对建筑物振动的影响大于高频段荷载的影响,但该低频段宽度要比建筑抗震分析中所考虑的地震荷载频段要宽;不同类型土层上建筑物的振动响应规律基本相同,表现为随建筑物距离地铁线路距离的增大,由地铁运行所诱发的建筑物的振动响应波动减小,但随土层硬度增加,建筑物的振动响应水平和衰减幅度也随之减小。  相似文献   

16.
随着城市建筑群的飞速建设,由地铁运行引起的建筑群低频微振动问题越来越突出。本研究依托成都某建筑群项目,研究地铁运行对土体及建筑群振动的影响。考虑轮轨非线性动力相互作用、土体分层特性、土体-建筑相互作用关系等因素,建立地铁列车-轨道-隧道-土体-建筑群耦合动力学模型;通过现场测试掌握地铁振动源强特征,并对模型进行验证;在此基础上研究地铁动荷载下土体振动的空间传播规律及不同土层界面处的局部振动特性;评估地铁运行对建筑群的影响。研究表明:建立的动力学模型可有效用于研究地铁运行下建筑群低频微振动问题;实测隧道壁加速度卓越频率为31.5~80 Hz,实测隧道壁VLzmax(最大z振级)主要在70.3~71 dB,实测道床VLzmax则在94.3~125 dB;随着振动波在土体中向上传递,振动能量逐渐衰减,但是在地表附近存在一定的振动放大;土体对80 Hz以上的振动具有较强的吸收能力,随着振动横向传播距离的增大,VLzmax近似线性减小;该建筑群中的住宅楼和商业楼均未出现振动超标。  相似文献   

17.
为研究地铁车速对曲线段组合式道床系统振动特性的影响,对比分析地铁列车平均车速为20 km/h、40km/h和60 km/h工况下,曲线段组合式道床系统时域和频域的现场测试结果,分析结果表明:行车速度对曲线段组合式道床系统轨道结构垂向位移影响不大;低轨侧的轨道结构时域振动幅值均大于高轨侧;车速由20 km/h增至60 km/h时,曲线段组合式道床系统低轨侧钢轨、轨道板和隧道壁的垂向振动加速度幅值分别提升14.7 dB、7.6 dB和8.6 dB,高轨侧幅值分别提升12.2 dB、8 d B和8.4 d B;车速的提高主要增大了轨道结构63 Hz以下和250 Hz以上频段的振动,对80~200 Hz频段的振动影响不大;谐振盖板阻尼谐振器能降低组合道床在20~40 Hz频率范围内的垂向振动;车速为60 km/h时,组合式道床系统结构在1 Hz~25 Hz频段的振动显著增加,具体原因有待进一步研究。  相似文献   

18.
为研究隧道内地铁列车车内噪声特性,建立了隧道-车体有限元-边界元声学分析模型。基于地铁B型车车轨耦合模型和现场试验获取车体二系悬挂力激励和轮轨噪声激励,将激励施加到车体计算分析车内噪声,以广州轨道交通7号线列车噪声试验数据对仿真分析结果进行验证,并研究了结构声和空气声对车内噪声的影响规律。分析结果表明:车内各标准点声压级图变化趋势基本一致,峰值中心频率集中在630 Hz处,主要频段为200~1 600 Hz,车体转向架上方A声级比车体中心高约1.02~2.35 dB(A);结构声对车内噪声的主要影响频段在20~200 Hz,空气声对车内噪声的主要影响频段在200~5 000 Hz,其中500~5 000 Hz频段最为显著;60 km/h车速下,结构声荷载作用下车厢中心处A声级比空气声荷载作用下相同位置高约21 dB(A)。该研究成果可为降低列车车内噪声,改善车内声学环境提供理论依据。  相似文献   

19.
在软土和岩层不同地质条件下采集列车通过时隧道壁及隧道上方地面距隧道中心线水平距离为0、15 m和30 m处的垂向振动,经过Fourier变换和1/3倍频程处理得到振动的频谱特性,分析不同频段振动的传递损失。结果显示,对于软土地质和岩层地质,在传递过程中都存在两个振动峰值;振动从隧道壁传至地面0 m时,软土内高频振动衰减较大,岩层内低频振动衰减较大;在地面传播过程中,对于软土地质,在15 m处出现振动放大现象;在30 m测试距离内,12.5 Hz以下的低频振动在两种地质条件下均衰减较小,在30 m处40 Hz以上的振动在两种地质条件下均衰减较大,此研究结果可为不同地质条件下地铁线路上部建筑减振及地铁线路规划提供参考。  相似文献   

20.
随着轨道交通行业的快速发展,轨道交通对沿线砌体结构的振动影响愈发显著,并存在振动局部放大的现象。通过建立车辆-轨道-隧道-地层-砌体结构耦合动力学模型,结合砌体结构模态分析,对某地铁线路临近1~6层砌体结构进行分析。结果表明:(1)当列车车型采取B型车、运行速度为60 km/h时,沿线低层(1~2层)砌体结构受地铁运行影响较小,较高层(3~6层)砌体结构出现振动响应放大现象;当砌体结构总层数为3~6层时,水平向振动加速度均在第2层取得最大值,第1层取得最小值。(2)从砌体结构模态分析结果来看,2~6层均在特定层数出现振动响应放大,且不同层数出现响应放大的振型频率范围在23~46 Hz之间,1层结构响应放大不明显。(3)砌体结构出现振动响应放大现象的振动频率与结构自振频率基本一致,且在此频率下,列车激振造成的楼层响应放大现象与自振模态中振动最大值出现的层数也基本一致,故列车荷载诱发砌体结构本身的自振,从而产生振动响应放大现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号