共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper investigates input-to-state stability (ISS) and integral input-to-state stability (iISS) of impulsive and switching hybrid systems with time-delay, using the method of multiple Lyapunov–Krasovskii functionals. It is shown that, even if all the subsystems governing the continuous dynamics, in the absence of impulses, are not ISS/iISS, impulses can successfully stabilize the system in the ISS/iISS sense, provided that there are no overly long intervals between impulses, i.e., the impulsive and switching signal satisfies a dwell-time upper bound condition. Moreover, these impulsive ISS/iISS stabilization results can be applied to systems with arbitrarily large time-delays. Conversely, in the case when all the subsystems governing the continuous dynamics are ISS/iISS in the absence of impulses, the ISS/iISS properties can be retained if the impulses and switching do not occur too frequently, i.e., the impulsive and switching signal satisfies a dwell-time lower bound condition. Several illustrative examples are presented, with their numerical simulations, to demonstrate the main results. 相似文献
3.
The paper deals with the problem of the asymptotic stability for general continuous nonlinear networked control systems (NCSs). Based on Lyapunov stability theorem combined with improved Razumikhin technique, the sufficient conditions of asymptotic stability for the system are derived. With the proposed method, the estimate of maximum allowable delay bound (MADB) for linear networked control system is also given. Compared to the other methods, the proposed method gives a much less conservative MADB and more general results. Numerical examples and some simulations are worked out to demonstrate the effectiveness and performance of the proposed method. 相似文献
4.
Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays 总被引:3,自引:0,他引:3
Wu-Hua Chen Author Vitae 《Automatica》2009,45(6):1481-1488
This paper is concerned with analyzing input-to-state stability (ISS) and integral-ISS (iISS) for nonlinear impulsive systems with delays. Razumikhin-type theorems are established which guarantee ISS/iISS for delayed impulsive systems with external input affecting both the continuous dynamics and the discrete dynamics. It is shown that when the delayed continuous dynamics are ISS/iISS but the discrete dynamics governing the impulses are not, the ISS/iISS property of the impulsive system can be retained if the length of the impulsive interval is large enough. Conversely, when the delayed continuous dynamics are not ISS/iISS but the discrete dynamics governing the impulses are, the impulsive system can achieve ISS/iISS if the sum of the length of the impulsive interval and the time delay is small enough. In particular, when one of the delayed continuous dynamics and the discrete dynamics are ISS/iISS and the others are stable for the zero input, the impulsive system can keep ISS/iISS no matter how often the impulses occur. Our proposed results are evaluated using two illustrative examples to show their effectiveness. 相似文献
5.
Input-to-state stability of networked control systems 总被引:9,自引:0,他引:9
A new class of Lyapunov uniformly globally asymptotically stable (UGAS) protocols in networked control systems (NCS) is considered. It is shown that if the controller is designed without taking into account the network so that it yields input-to-state stability (ISS) with respect to external disturbances (not necessarily with respect to the error that will come from the network implementation), then the same controller will achieve semi-global practical ISS for the NCS when implemented via the network with a Lyapunov UGAS protocol. Moreover, the ISS gain is preserved. The adjustable parameter with respect to which semi-global practical ISS is achieved is the maximal allowable transfer interval (MATI) between transmission times. 相似文献
6.
Shumei Mu Tianguang Chu Long Wang Intelligent Control Laboratory Center for Systems Control Department of Mechanics Engineering Science Peking University Beijing PRC Wensheng Yu Institute of Automation Chinese Academy of Sciences Beijing PRC 《国际自动化与计算杂志》2004,1(1):26-34
This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods. 相似文献
7.
This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dynamical systems that evolve according to ordinary differential equations most of the time, but occasionally exhibit discontinuities (or impulses). We provide a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the continuous dynamics are ISS, but the discrete dynamics that govern the impulses are not, the impulses should not occur too frequently, which is formalized in terms of an average dwell-time (ADT) condition. Conversely, when the impulse dynamics are ISS, but the continuous dynamics are not, there must not be overly long intervals between impulses, which is formalized in terms of a novel reverse ADT condition. We also investigate the cases where (i) both the continuous and discrete dynamics are ISS, and (ii) one of these is ISS and the other only marginally stable for the zero input, while sharing a common Lyapunov function. In the former case, we obtain a stronger notion of ISS, for which a necessary and sufficient Lyapunov characterization is available. The use of the tools developed herein is illustrated through examples from a Micro-Electro-Mechanical System (MEMS) oscillator and a problem of remote estimation over a communication network. 相似文献
8.
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm. 相似文献
9.
A new delay system approach to network-based control 总被引:5,自引:0,他引:5
This paper presents a new delay system approach to network-based control. This approach is based on a new time-delay model proposed recently, which contains multiple successive delay components in the state. Firstly, new results on stability and H∞ performance are proposed for systems with two successive delay components, by exploiting a new Lyapunov-Krasovskii functional and by making use of novel techniques for time-delay systems. An illustrative example is provided to show the advantage of these results. The second part of this paper utilizes the new model to investigate the problem of network-based control, which has emerged as a topic of significant interest in the control community. A sampled-data networked control system with simultaneous consideration of network induced delays, data packet dropouts and measurement quantization is modeled as a nonlinear time-delay system with two successive delay components in the state and, the problem of network-based H∞ control is solved accordingly. Illustrative examples are provided to show the advantage and applicability of the developed results for network-based controller design. 相似文献
10.
This paper studies the robust exponential input-to-state stability (robust e-ISS) for impulsive systems. New notions of input-to-state exponent (IS-e) and e-property are proposed. Based on the established relation between IS-e and e-property, and the method of variation of constants formula, the equivalent conditions for robust e-ISS have been derived. Then the notion of robust event-e-ISS is defined. The sufficient conditions and the robust regions for robust e-ISS and robust event-e-ISS are also derived by using the IS-e of every subsystem. It shows the whole system may have robust event-e-ISS while every subsystem may have no ISS. It also shows the external disturbances may lead to relatively small robust regions. The results are then specialized to derive the equivalent conditions of interval e-ISS for interval impulsive systems. As an application, the result is used to test the ISS for a controlled micro-grid. 相似文献
11.
In this paper we prove that a switched nonlinear system has several useful input-to-state stable (ISS)-type properties under average dwell-time switching signals if each constituent dynamical system is ISS. This extends available results for switched linear systems. We apply our result to stabilization of uncertain nonlinear systems via switching supervisory control, and show that the plant states can be kept bounded in the presence of bounded disturbances when the candidate controllers provide ISS properties with respect to the estimation errors. Detailed illustrative examples are included. 相似文献
12.
This paper investigates the problem of absolute stability and stabilization for networked control systems (NCSs) with the controlled plant being Lurie systems (Lurie NCSs), in which the network‐induced delays are assumed to be time‐varying and bounded. By considering the relationship between the network‐induced delay and its upper bound, an improved stability criterion for networked control system is proposed. Furthermore, the resulting condition is extended to design a state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. A numerical example is worked out to illustrate the effectiveness and the benefits of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
This paper is concerned with the absolute stability problem of networked control systems (NCSs) with the controlled plant being Lurie systems (Lurie NCSs), in which the network‐induced delays are assumed to be time‐varying and bounded. First, in consideration of both the time‐varying network‐induced delays and data packet dropouts, the Lurie NCSs can be modeled as a multiple‐delays Lurie system. Then, a delay‐dependent absolute stability condition is established by using the Lyapunov–Krasovskii method. Next, two approaches to controller design are proposed in the terms of simple algebra criteria, which are easily solved via the toolbox in Matlab. Furthermore, the main results can be extended to robust absolute stability of Lurie NCSs with the structured uncertainties, where robust absolute stability conditions and approaches to robust controller design are presented. Finally, two numerical examples are worked out to illustrate the feasibility and the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Exponential stability of impulsive systems with application to uncertain sampled-data systems 总被引:1,自引:0,他引:1
We establish exponential stability of nonlinear time-varying impulsive systems by employing Lyapunov functions with discontinuity at the impulse times. Our stability conditions have the property that when specialized to linear impulsive systems, the stability tests can be formulated as Linear Matrix Inequalities (LMIs). Then we consider LTI uncertain sampled-data systems in which there are two sources of uncertainty: the values of the process parameters can be unknown while satisfying a polytopic condition and the sampling intervals can be uncertain and variable. We model such systems as linear impulsive systems and we apply our theorem to the analysis and state-feedback stabilization. We find a positive constant which determines an upper bound on the sampling intervals for which the stability of the closed loop is guaranteed. The control design LMIs also provide controller gains that can be used to stabilize the process. We also consider sampled-data systems with constant sampling intervals and provide results that are less conservative than the ones obtained for variable sampling intervals. 相似文献
15.
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective. 相似文献
16.
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective. 相似文献
17.
This paper investigates the problem of model predictive control for a class of networked control systems. Both sensor‐to‐controller and controller‐to‐actuator delays are considered and described by Markovian chains. The resulting closed‐loop systems are written as jump linear systems with two modes. The control scheme is characterized as a constrained delay‐dependent optimization problem of the worst‐case quadratic cost over an infinite horizon at each sampling instant. A linear matrix inequality approach for the controller synthesis is developed. It is shown that the proposed state feedback model predictive controller guarantees the stochastic stability of the closed‐loop system. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
18.
戴建国 《计算机工程与应用》2009,45(20):13-15
针对普遍存在的采样器和零阶保持器异步这一现象,研究了该类网络控制系统的状态反馈控制问题。首先,以事件驱动的零阶保持器的更新时刻为时间标识,并考虑到网络的诱导时延和数据丢包,建立网络控制系统的采样闭环模型,并转化为状态中连缀着两个时滞变量的时滞系统。然后,利用相应的时滞系统方法,对闭环网络控制系统进行了稳定性分析和控制器综合。最后,通过仿真实例验证了所得结果的正确性。 相似文献
19.
This article presents a novel model predictive control (MPC) scheme that achieves input-to-state stabilization of constrained discontinuous nonlinear and hybrid systems. Input-to-state stability (ISS) is guaranteed when an optimal solution of the MPC optimization problem is attained. Special attention is paid to the effect that sub-optimal solutions have on ISS of the closed-loop system. This issue is of interest as firstly, the infimum of MPC optimization problems does not have to be attained and secondly, numerical solvers usually provide only sub-optimal solutions. An explicit relation is established between the deviation of the predictive control law from the optimum and the resulting deterioration of the ISS property of the closed-loop system. By imposing stronger conditions on the sub-optimal solutions, ISS can even be attained in this case. 相似文献
20.
Modelling and control of networked control systems with both network-induced delay and packet-dropout 总被引:3,自引:0,他引:3
A new switched linear system model is proposed to describe the networked control system (NCS) with both network-induced delay and packet-dropout. A sufficient condition is derived for the exponential stability of the closed-loop NCS, and the obtained condition establishes the quantitative relation between the packet-dropout rate and the stability of the NCS. Design procedures for the state feedback stabilising controllers are also presented by using the augmenting technique. An illustrative example is provided to demonstrate the effectiveness of the proposed method. 相似文献