首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
OBJECTIVE: The calcium (Ca) pump of cardiac sarcoplasmic reticulum (SR) membranes is vulnerable to oxidation and hence likely to be damaged by chlorinated compounds, specifically hypochlorite (NaOCl) and monochloramine (NH2Cl), the most potent oxidants produced upon neutrophil activation. This could occur during prolonged ischemia or myocardial infarction when tissue levels of catecholamines are high. Phospholamban (PLN), the phosphorylatable regulator of the Ca pump, plays a central role in the effects of beta-adrenergic agonists on the heart. The purpose of this study was to investigate a possible role of PLN in determining the pump's sensitivity to NaOCl and NH2Cl. METHODS: Ca-uptake and Ca(2+)-ATPase activities in purified phosphorylated and control canine cardiac microsomes, incubated at increasing concentrations of NaOCl or NH2Cl, were related to the extent of PLN phosphorylation by protein kinase A, which was quantitated by PhosphorImager analysis. RESULTS AND CONCLUSIONS: Our data indicate that microsomal phosphorylation protects the Ca pump fully against 10 microM NaOCl or NH2Cl, which inhibit Ca-uptake by 21-41% when assayed at 25 or 37 degrees C and saturating Ca2+ in unphosphorylated microsomes, and protects partially at higher oxidant concentrations. The protective effect of protein kinase A on Ca-uptake is proportional to the amount of phosphorylated PLN. No comparable protection against similar oxidative damage of the Ca pump is observed when light fast skeletal muscle microsomes, which lack PLN, are incubated under conditions favorable for phosphorylation nor when PLN's inhibition of the cardiac Ca pump is relieved by proteolytic cleavage of its cytoplasmic domain. Our findings contribute toward an understanding of possible endogenous protective mechanisms that may promote calcium homeostasis in myocardial cells in inflammatory states associated with neutrophil activation and may suggest an approach toward development of protective strategies against oxidative damage in the heart.  相似文献   

2.
The effects of calcium and magnesium ions in cardioplegic solutions on cardioprotection and intracellular calcium ion handling during ischemia and reoxygenation were investigated in cultured neonatal rat myocardial cells. Myocytes were subjected to simulated ischemia for 60 min at 37 degrees C in hyperkalemic cardioplegic solutions containing various concentrations of calcium and magnesium ions, followed by 30 min of reoxygenation. For each Ca2+ concentration (0.1, 0.6, 1.2, or 2.4 mM), the Mg2+ concentration was either 0, 1.2, 8, or 16 mM. The increase in intracellular Ca2+ concentration during ischemia and reoxygenation was suppressed by the addition of magnesium ion, independent of cardioplegic Ca2+ concentration. The recovery of spontaneous contraction rate and enzyme leakage (creatine phosphokinase and lactate dehydrogenase) during both ischemia and reoxygenation correlated with the degree of inhibition of intracellular Ca2+ accumulation. However, in the 0.1 mM Ca2+ groups in which the Mg2+ concentration was greater than 8 mM, the intracellular Ca2+ concentration increased during reoxygenation in a dose-dependent fashion of Mg2+, and was associated with increased enzyme leakage. The findings suggest that in immature cardiac myocytes, the concentrations of Ca2+ and Mg2+ present in cardioplegic solutions control the intracellular Ca2+ concentration during ischemia and reoxygenation, which, in turn, influences the cardioprotective effect of the cardioplegic solution.  相似文献   

3.
Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-dependent protein kinase has been proposed to provide additional regulation. To investigate these effects in detail, we have purified Ca2+-ATPase from cardiac sarcoplasmic reticulum using affinity chromatography and reconstituted it with purified, recombinant phospholamban. The resulting proteoliposomes had high rates of calcium transport, which was tightly coupled to ATP hydrolysis (approximately 1.7 calcium ions transported per ATP molecule hydrolyzed). Co-reconstitution with phospholamban suppressed both calcium uptake and ATPase activities by approximately 50%, and this suppression was fully relieved by a phospholamban monoclonal antibody or by phosphorylation either with cAMP-dependent protein kinase or with calcium/calmodulin-dependent protein kinase. These effects were consistent with a change in the apparent calcium affinity of Ca2+-ATPase and not with a change in Vmax. Neither the purified, reconstituted cardiac Ca2+-ATPase nor the Ca2+-ATPase in longitudinal cardiac sarcoplasmic reticulum vesicles was a substrate for calcium/calmodulin-dependent protein kinase, and accordingly, we found no effect of calcium/calmodulin-dependent protein kinase phosphorylation on Vmax for calcium transport.  相似文献   

4.
Cardiovascular complications are the most common causes of morbidity and mortality in diabetic patients. Coronary atherosclerosis is enhanced in diabetics, whereas myocardial infarction represents 20% of deaths of diabetic subjects. Furthermore, re-infarction and heart failure are more common in the diabetics. Diabetic cardiomyopathy is characterized by an early diastolic dysfunction and a later systolic one, with intracellular retention of calcium and sodium and loss of potassium. In addition, diabetes mellitus accelerates the development of left ventricular hypertrophy in hypertensive patients and increases cardiovascular mortality and morbidity. Treating the cardiovascular problems in diabetics must be undertaken with caution. Special consideration must be given with respect to the ionic and metabolic changes associated with diabetes. For example, although ACE inhibitors and calcium channel blockers are suitable agents, potassium channel openers cause myocardial preconditioning and decrease the infarct size in animal models, but they inhibit the insulin release after glucose administration in healthy subjects. Furthermore, potassium channel blockers abolish myocardial preconditioning and increase infarct size in animal models, but they protect the heart from the fatal arrhythmias induced by ischemia and reperfusion which may be important in diabetes. For example, diabetic peripheral neuropathy usually presents with silent ischemia and infarction. Mechanistically, parasympathetic cardiac nerve dysfunction, expressed as increased resting heart rate and decreased respiratory variation in heart rate, is more frequent than the sympathetic cardiac nerve dysfunction expressed as a decrease in the heart rate rise during standing.  相似文献   

5.
Although the pathogenesis of myocardial stunning has not been definitively established, the two major hypotheses are that it is caused by the generation of oxygen-derived free radicals on reperfusion and by a loss of sensitivity of contractile filaments to calcium. These hypotheses are not mutually exclusive and are likely to represent different facets of the same pathophysiological cascade. For example, a burst of free radical generation after reperfusion could alter contractile filaments in a manner that renders them less responsive to calcium. Increased free radical formation could also cause cellular calcium overload, which would damage the contractile apparatus of the myocytes. There is now considerable evidence that myocardial stunning occurs clinically in various situations in which the heart is exposed to transient ischemia, such as unstable angina, acute myocardial infarction with early reperfusion, exercise-induced ischemia, cardiac surgery, and cardiac transplantation. Recognition of myocardial stunning is clinically important and may impact patient treatment. Although no ideal diagnostic technique for myocardial stunning has yet been developed, thallium-201 scintigraphy or dobutamine echocardiography are available and can be useful to identify viable myocardium with reversible wall motion abnormalities. An intriguing possibility is that so-called chronic hibernation may in fact be the result of repetitive episodes of stunning, which have a cumulative effect and cause protracted postischemic left ventricular dysfunction. A better understanding of myocardial stunning will expand our knowledge of the pathophysiology of myocardial ischemia and provide a rationale for developing new therapeutic strategies designed to prevent postischemic dysfunction.  相似文献   

6.
"Remodeling" implies changes that result in rearrangement of normally existing structures. This review focuses only on permanent modifications in relation to clinical dysfunction in cardiac remodeling (CR) secondary to myocardial infarction (MI) and/or arterial hypertension and includes a special section on the senescent heart, since CR is mainly a disease of the elderly. From a biological point of view, CR is determined by 1 ) the general process of adaptation which allows both the myocyte and the collagen network to adapt to new working conditions; 2) ventricular fibrosis, i.e., increased collagen concentration, which is multifactorial and caused by senescence, ischemia, various hormones, and/or inflammatory processes; 3) cell death, a parameter linked to fibrosis, which is usually due to necrosis and apoptosis and occurs in nearly all models of CR. The process of adaptation is associated with various changes in genetic expression, including a general activation that causes hypertrophy, isogenic shifts which result in the appearance of a slow isomyosin, and a new Na+-K+-ATPase with a low affinity for sodium, reactivation of genes encoding for atrial natriuretic factor and the renin-angiotensin system, and a diminished concentration of sarcoplasmic reticulum Ca2+-ATPase, beta-adrenergic receptors, and the potassium channel responsible for transient outward current. From a clinical point of view, fibrosis is for the moment a major marker for cardiac failure and a crucial determinant of myocardial heterogeneity, increasing diastolic stiffness, and the propensity for reentry arrhythmias. In addition, systolic dysfunction is facilitated by slowing of the calcium transient and the downregulation of the entire adrenergic system. Modifications of intracellular calcium movements are the main determinants of the triggered activity and automaticity that cause arrhythmias and alterations in relaxation.  相似文献   

7.
Increases in cytosolic free calcium concentration ([Ca2+]I) may play an important role in myocardial ischemic injury. An early effect of the rise in [Ca2+]I may be impaired postischemic contractile function if the ischemic myocardium is reperfused during the reversible phase of ischemic injury; furthermore, if the rise in [Ca2+]I is prolonged, a cascade of events may be initiated which ultimately results in lethal injury. With the development of methods for measuring [Ca2+]I, it has become possible to evaluate directly the role of increased [Ca2+]I in myocardial ischemic injury. Although it has been possible to show that inhibition of the transport processes which contribute to the early rise in [Ca2+]I attenuates stunning and the rise in [Ca2+]I concurrently, if increased [Ca2+]I plays an important role in ischemic injury, then it should be possible to show that interventions which alter the timecourse of ischemic injury also alter the timecourse of the rise in [Ca2+]I in a parallel manner. Recently, considerable effort has been expended to investigate the mechanisms underlying the preconditioning phenomenon, whereby repetitive brief periods of ischemia prior to a sustained period of ischemia protects the myocardium from injury during the sustained period of ischemia, and this has stimulated additional work to understand the possible involvement of adenosine as a mediator of preconditioning as well as to understand the protective effects of adenosine. Measurements of [Ca2+]I using 19F NMR of 5FBAPTA-loaded hearts have shown that preconditioning attenuates the rise in [Ca2+]I during 30 min of ischemia and reduces stunning during reflow. Adenosine pretreatment mimics the effects of preconditioning on the rise in [Ca2+]I and on stunning, but adenosine receptor antagonists do not eliminate the protective effects of preconditioning, although some adenosine antagonists also block hexose transport and under these conditions, the ability of preconditioning to attenuate the rise in [Ca2+]I is abolished and there is a corresponding loss of the protective effect of preconditioning on stunning. Although it has been suggested that the beneficial effect of preconditioning on infarct size can be eliminated by pretreatment with glibenclamide, in the isolated rat heart glibenclamide does not affect the attenuation of the rise in [Ca2+]I induced by preconditioning and does not affect stunning. All of these studies show a consistent relationship between the magnitude of the rise in [Ca2+]I during ischemia and the degree of stunning during reperfusion. The data suggest that increased [Ca2+]I plays a very important role in myocardial ischemic injury.  相似文献   

8.
The effects of Ca2+ concentration on postischemic myocardial stunning were studied in isolated working hearts of rats with streptozotocin-induced diabetes and of age-matched control rats. During reperfusion after 10 min of ischemia, hearts from control rats showed complete recovery of cardiac function of Ca2+ concentrations of 1.25, 1.88, and 2.50 mmol/L, while the recovery of diabetic rats was decreased only at a Ca2+ concentration of 2.50 mmol/L. Although myocardial Na+ and Ca2+ concentrations were comparable between control and diabetic rats, only diabetic rats showed increases in myocardial concentration of Na+ during ischemia and Ca2+ during reperfusion at a Ca2+ concentration of 2.50 mmol/L. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning via an overload of calcium.  相似文献   

9.
The central nervous system consumes 20% of the cardiac output for normal function. The neurons are very sensitive to the effects of ischemia. Cessation of cerebral blood flow results in severe damage to neurons and other brain structures. This is secondary to a combination of energy loss, excessive excitation promoting intracellular calcium (Ca2+) buildup, relative lack of inhibitory responses, generation of oxygen free radicals (especially during the reperfusion period) and several other destructive cascades. Medications that antagonize the effects of glutamate at post-synaptic receptors are either ineffective or have serious side-effects. Ca2+ entry blockers have shown disappointing results in clinical trials in patients with acute cerebral infarction. Data with protective effects of oxygen free radical scavengers in the post-ischemic period have shown conflicting results. There is recent interest with the use of agents that increase cerebral inhibitory responses after an ischemic insult. Such agents are effective when used before, during or up to 4 hours after the ischemic insult. Many such medications have few side-effects and are in clinical use for other indications. This review will summarize inhibitory mechanisms that may be important in cerebral ischemia, and provide experimental evidence for their potential efficacy.  相似文献   

10.
Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.  相似文献   

11.
Physiological and pharmacological interventions are used to regulate cardiac contractile functions via modulation of Ca2+ signaling. The relevant regulatory mechanisms have recently been assessed in detail by use of novel experimental procedures, which include simultaneous measurements of intracellular levels of Ca2+ ions and contractile force in intact myocardial preparations loaded with the intracellular Ca2+ indicator aequorin and fluorescent dyes, namely, fura-2, indo-1 and fluo-3. Association with or dissociation from intracellular Ca2+ transients of contractile activity is taken as evidence that reflects the primary mechanism of action of individual inotropic interventions. In addition, motility assays of actin-myosin interactions in vitro have made it possible to define the site of action of Ca2+ sensitizers as troponin C and the interaction of the troponin-tropomyosin complex with actin or the actin-myosin interface at crossbridges. Frank-Starling mechanism operates at the level of the binding of Ca2+ ions to troponin C and subsequent regulatory processes, while the force-frequency relationship is mainly ascribed to an alteration in the intracellular mobilization of Ca2+ ions. Cardiotonic agents can be classified as follows: 1) agents that act via a cyclic AMP-dependent or a cyclic AMP-independent mechanism; and 2) agents that facilitate the intracellular mobilization of Ca2+ ions or increase in myofibrillar sensitivity to Ca2+ ions. Regulatory mechanisms mediated via the phosphorylation of functional proteins induced by cyclic AMP, which is responsible for the actions of novel cardiotonic agents, beta 1-adrenoceptor partial agonist and selective inhibitors of phosphodiesterase (PDE) III, have currently been clarified in more detail. Ca2+ sensitizers are of extreme therapeutic interest because of their ability to increase myocardial contractility without an increase in activation energy; they are devoid of risks of arrhythmogenicity and myocardial cell death from intracellular Ca2+ overload; and they effectively reverse contractile dysfunction under pathophysiological situations, such as acidosis or myocardial stunning.  相似文献   

12.
The effects of three different dihydropyridine (DHP) calcium channel antagonists, nisoldipine, nimodipine, and nifedipine, on myocardial ischemic and reperfusion injury were studied using isolated rat hearts subjected to ischemia and reperfusion. Hearts were perfused with Krebs-Henseleit bicarbonate buffer containing 0, 4, 16, 64 and 100 nM concentrations of the above dihydropyridines for 15 min. Global ischemia was then induced by terminating the aortic flow for 30 min at 37 degrees, followed by 30 min of reperfusion. Left ventricular (LV) functional (LV developed pressure, its first derivative and coronary flow) and biochemical parameters (creatine kinase release) were monitored prior to ischemia and during reperfusion. In separate group of hearts, intracellular free Ca2+ ([Ca2+]i) was monitored with an intracellular calcium analyzer using a fluorescent Ca2+ indicator (Fura-2 AM). Tissue Ca2+ was also measured by atomic absorption spectroscopy after perfusing the hearts with ion-free cold buffer to wash out extracellular Ca2+. Significant recovery of the coronary flow was observed in all hearts treated with a high concentration (100 nM) of DHPs compared with the control group (P < 0.05), while a lower dose of nisoldipine (16 nM) and nifedipine (64 nM) also improved the coronary flow effectively. Reduction of myocardial creatine kinase release and improvement of the recovery of LV developed pressure, dp/dtmax, were achieved by DHPs in a concentration-dependent manner. A higher concentration of DHPs also decreased the formation of myocardial thiobarbituric acid reactive substances, although these compounds did not possess direct free radical scavenging effects in vitro. Tissue Ca2+ content was reduced significantly in treated groups. The rise of [Ca2+]i during ischemia and reperfusion appeared to be attenuated by these DHPs. The concentration-response study of the three DHPs showed the effective concentrations for reducing [Ca2+]i to be 16, 64 and 100 nM nisoldipine, nifedipine and nimodipine, respectively, in this experimental setting. The above results indicate that pretreatment with DHPs can attenuate the myocardial reperfusion injury by modulating Ca2+ overloading and decreasing the susceptibility of the membrane to free radical attack.  相似文献   

13.
Oxidative stress can cause changes in intracellular free calcium concentration ([Ca2+]i) that resemble those occurring under normal cell signaling. In the alveolar macrophage, hydroperoxide-induced elevation of [Ca2+]i modulates the respiratory burst and other important physiologic functions. The source of Ca2+ released by hydroperoxide is intracellular but separate from the endoplasmic reticulum pool released by receptor-mediated stimuli (Hoyal, C. R., Gozal, E., Zhou, H., Foldenauer, K., and Forman, H. J. (1996) Arch. Biochem. Biophys. 326, 166-171). Previous studies in other cells have suggested that mitochondria are a potential source of oxidant-induced [Ca2+]i elevation. In this study we have identified another potential source of hydroperoxide-releasable intracellular calcium, that bound to annexin VI on the inner surface of the plasma membrane. Translocation of annexin VI from the membrane during exposure to t-butyl hydroperoxide matched elevation of [Ca2+]i as a function of time and t-butyl hydroperoxide concentration. The translocation was possibly due to a combination of ATP depletion and oxidative modification of membrane lipids and proteins. A sustained increase in [Ca2+]i occurring > 50 pmol/10(6) cells (50 microM under these conditions) appeared to be a consequence of membrane Ca2+-ATPase dysfunction. These results suggest that exposure to oxidative stress results in early alterations to the plasma membrane and concomitant release of Ca2+ into the cytosol. In addition it suggests a mechanism for participation of annexin VI translocation that may underlie the alterations in macrophage function by oxidative stress.  相似文献   

14.
We studied the effect of 2-week treatment with estradiol 17beta on myocardial glutathione concentration in dogs and isolated perfused rat heart subjected to brief coronary ischemia and reperfusion. Estradiol protected against ischemia/reperfusion-induced myocardial systolic shortening and malonylaldehyde production and increased myocardial glutathione concentration and glucose-6-phosphate dehydrogenase enzyme activity. Reduction of myocardial glutathione with buthionine sulfoximine to levels seen in the absence of estrogen reversed the protective effect of estradiol against myocardial dysfunction and lipid peroxidation associated with ischemia/reperfusion. These results suggest that the antioxidant effect of estradiol in ischemia/reperfusion may be mediated by regulation of myocardial glutathione metabolism.  相似文献   

15.
BACKGROUND: Hyperkalemic cardioplegic solutions effectively arrest the heart, but may also induce intracellular Ca2+ loading and cellular hypercontracture, which could contribute to ventricular dysfunction associated with global surgical ischemia. Recently, it has been proposed that 17beta-estradiol may possess protective properties in the ischemic myocardium. The purpose of the present study was to examine the action of 17beta-estradiol on cardiac cells exposed to hyperkalemic stress. METHODS: Single ventricular cardiomyocytes, a preparation devoid of vascular and neuronal elements, were isolated from guinea pig hearts, loaded with a Ca2+-sensitive fluorescent probe, and imaged by digital epifluorescent microscopy. The emitted fluorescence of the probe, a measure of intracellular Ca2+ concentration, and cell length were simultaneously recorded during hyperkalemic challenge, in the absence or presence of 17beta-estradiol. RESULTS: In control cardiomyocytes, the cytosolic concentration of Ca2+ was 138+/-11 nmol/L and cell length 93+/-11 microm. Exposure to high K+ (+16 mmol/L KCl) significantly increased cytosolic Ca2+ to 2,191+/-87 nmol/L (p < 0.001), and produced cell shortening (length at 39+/-5 microm; p < 0.001). 17beta-Estradiol (10 micromol/L) acutely prevented high K+ to induce either intracellular Ca2+ loading (144+/-13 nmol/L, p < 0.001) or hypercontracture (91+/-10 microm, p < 0.001). Tamoxifen (10 micromol/L), an antiestrogen, abolished the protective effect of 17beta-estradiol. CONCLUSIONS: We conclude that 17beta-estradiol prevents hyperkalemia-induced Ca2+ loading and hypercontracture through a direct and tamoxifen-sensitive action in cardiomyocytes. This study raises the possibility that 17beta-estradiol should be considered as a cardioprotective adjunct toward a safer hyperkalemic cardioplegia.  相似文献   

16.
Although a critical factor causing lethal ischemic ventricular arrhythmias, net cellular K loss during myocardial ischemia and hypoxia is poorly understood. We investigated whether selective activation of ATP-sensitive K (KATP) channels causes net cellular K loss by examining the effects of the KATP channel agonist cromakalim on unidirectional K efflux, total tissue K content, and action potential duration (APD) in isolated arterially perfused rabbit interventricular septa. Despite increasing unidirectional K efflux and shortening APD to a comparable degree as hypoxia, cromakalim failed to induce net tissue K loss, ruling out activation of KATP channels as the primary cause of hypoxic K loss. Next, we evaluated a novel hypothesis about the mechanism of hypoxic K loss, namely that net K loss is a passive reflection of intracellular Na gain during hypoxia or ischemia. When the major pathways promoting Na influx were inhibited, net K loss during hypoxia was almost completely eliminated. These findings show that altered Na fluxes are the primary cause of net K loss during hypoxia, and presumably also in ischemia. Given its previously defined role during hypoxia and ischemia in promoting intracellular Ca overload and reperfusion injury, this newly defined role of intracellular Na accumulation as a primary cause of cellular K loss identifies it as a central pathogenetic factor in these settings.  相似文献   

17.
BACKGROUND: Basic fibroblast growth factor (bFGF) is highly expressed in the myocardium in some cardiac disorders, such as ischemia-reperfusion and cardiac allograft rejection. However, whether bFGF has any effects on myocardial contraction is unknown. METHODS AND RESULTS: We examined the effects of bFGF on myocardial contractility using isolated adult rat cardiac myocyte preparations. bFGF exerted a direct negative inotropic effect that was concentration and time dependent. The pretreatment of myocytes with a neutralizing anti-bFGF antibody (100 ng/mL) abolished the negative inotropic effects of bFGF (100 ng/mL). Platelet-derived growth factor (12.5 ng/mL) and transforming growth factor-beta (1 ng/mL) did not exert such effects, which indicated that bFGF-induced negative inotropism was considered to be specific for this growth factor. bFGF decreased the peak intracellular Ca2+ transient by 46% during systole. The enhanced production of nitric oxide was unlikely to be responsible for the bFGF-induced negative inotropic effect. CONCLUSIONS: bFGF, primarily a potent growth promoter, produced acute negative inotropic effects in the adult cardiac myocyte that could have resulted from alterations in intracellular Ca2+ homeostasis. The negative inotropic effect of bFGF may contribute to myocardial dysfunction associated with ischemia-reperfusion injury and heart transplant rejection.  相似文献   

18.
The functional behaviour of membrane systems of the cardiac cell during oxygen deficiency was analyzed and the alterations were related to the metabolic state of the tissue as an index of injury. 1. The retention function of the cell membrane for proteins. With increasing energy deficiency the cardiac sarcolemma loses its ability to retain macromolecules (myoglobin, enzymes) within the cell. Close correlations exist between protein release and oxygen supply as well as ATP content of the tissue. 2. Function of isolated mitochondria after ischemia. In parallel with a strong impairment of oxidative phosphorylation (decrease of QO2, RCI values, phosphorylation rates) the Ca++-transporting activity of mitochondria is continuously depressed with decreasing myocardial ATP. 3. Function of isolated sarcoplasmic reticulum after ischemia. With breakdown of high energy phosphates during ischemia rate and extent of Ca++ binding with decrease markedly.  相似文献   

19.
Many pathological conditions can be the cause or the consequence of mitochondrial dysfunction. For instance anoxia, which is initiated by a critical reduction of oxygen availability for mitochondrial oxidations, is followed by a wide variety of mitochondrial alterations. A crucial role in the evolution of cell injury is to be attributed to the direction of operation of the F0F1 ATPase, which may turn mitochondria into the major consumers of cellular ATP in the futile attempt to restore the proton electrochemical gradient. On the other hand, functional mitochondria can paradoxically accelerate or exacerbate cell damage. This concept is particularly relevant for the ischemic myocardium. Indeed, inhibition of the respiratory chain or addition of uncouplers of oxidative phosphorylation can both limit the extent of enzyme release in the intact heart and prevent the onset of irreversible morphological changes in isolated myocytes. From studies on different tissues in a variety of pathological conditions a general consensus emerges on the role of intracellular Ca2+ overload as a pivotal link between cellular alterations and mitochondrial dysfunction. Oxidative phosphorylation is reduced by a massive mitochondrial uptake of Ca2+, resulting in a vicious cycle whereby the reduced ATP availability is followed by a failure of the mechanisms which extrude Ca2+ from the sarcoplasm. In addition, the rise in [Ca2+]i could promote opening of the cyclosporin-sensitive mitochondrial permeability transition pore, leading to a sudden deltapsi(m) dissipation. Here, we review the changes in intracellular and intramitochondrial ionic homeostasis occurring during ischemia and reperfusion. In particular, we evaluate the potential contribution of the permeability transition pore to cellular damage and discuss the mechanisms which can determine the cellular fate from a mitochondrial point of view.  相似文献   

20.
This review summarizes recent work on the regulation of the permeability transition pore, a cyclosporin A-sensitive mitochondrial channel that may play a role in intracellular calcium homeostasis and in a variety of forms of cell death. The basic bioenergetics aspects of pore modulation are discussed, with some emphasis on the links between oxidative stress and pore dysregulation as a potential cause of mitochondrial dysfunction that may be relevant to cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号