首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
《信息技术》2019,(9):39-43
文中研究了稀疏表示分类在合成孔径雷达(SAR)目标识别中的应用。稀疏表示分类是基于压缩感知理论的一种新的分类算法,近年来在人脸识别、遥感图像分类等领域得到广泛应用。文中对稀疏表示分类在SAR目标识别中的应用进行分析研究,介绍了稀疏表示的基本原理以及几种典型的稀疏系数求解算法。采用稀疏表示分类器对MSTAR数据集进行了目标识别实验,验证在SAR目标识别上的性能。  相似文献   

2.
3.
段沛沛  李辉 《电讯技术》2016,56(1):20-25
高分辨距离像(HRRP)目标识别算法很多,在其利用高分辨距离像蕴含的目标结构信息的同时,也需要面对数据量巨大的难题.事实上,尽管高分辨距离像数据量巨大,但却是稀疏的,然而利用其稀疏特性进行识别的方法却不多.为此,提出了一种基于压缩感知稀疏表示方法实现目标识别的算法.该算法首先采用遗传正交匹配追踪(OMP)算法对一维距离像训练样本进行稀疏分解以获得类别字典,然后根据类别字典分析测试样本的重构误差实现目标识别.仿真实验证明,所提算法简捷、识别率更高,相较于常规算法识别率提高最多可达20%,并且在受到噪声干扰情况下依然能够稳健地识别目标.  相似文献   

4.
韩萍  王欢 《信号处理》2013,29(12):1696-1701
提出了一种基于KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition ,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显的提高目标的识别结果,是一种有效的SAR目标识别方法。   相似文献   

5.
王佳维  许枫  杨娟 《电子学报》2024,(1):217-231
针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率.  相似文献   

6.
基于多重核的稀疏表示分类   总被引:1,自引:0,他引:1  
陈思宝  许立仙  罗斌 《电子学报》2014,42(9):1807-1811
稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了两种自动更新方式并进行了分析与比较.在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性.  相似文献   

7.
基于稀疏随机投影的SIFT医学图像配准算法   总被引:1,自引:0,他引:1  
针对尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)算法在关键点特征描述向量阶段计算复杂并且维数较高的现象,提出了一种基于压缩感知理论的SIFT算法。通过压缩感知理论的稀疏特征表示方法,对SIFT关键点特征向量进行提取,将高维梯度导数向量降到低维的稀疏特征向量,降低了关键点描述向量维度。采用欧式距离作为关键点的相似性度量, Best-Bin-First(BBF)数据结构避免穷举,使数据的运算量大为减少。实验结果表明,新算法对存在仿射变换的医学图像配准性能优于传统SIFT算法,与当前改进型的SIFT算法相比,本文算法的实时性明显增强。  相似文献   

8.
李洋  李双田 《信号处理》2014,30(8):914-923
本文讨论的语声信息恢复旨在提高带噪语声的可懂度。通过类比听觉掩蔽与视觉闭塞,在基于稀疏表示的图像去噪思想启发下,本文提出了基于压缩感知理论的稀疏表示语声恢复模型、数学表达式以及算法。与传统的语声增强算法不同,本文模型与算法的特点在于具备有效消除全局噪声干扰和恢复局部被噪声掩蔽的语声成分的双重能力,有效提高了处理后语声的可懂度。仿真实验和客观语声质量测度验证了提出的模型与算法的可行性、有效性以及优越性。   相似文献   

9.
为了克服核稀疏表示分类(KSRC)算法无法获取数据的局部性信息从而导致获取的稀疏表示系数判别性受到限制的不足,提出一种局部敏感的KSRC(LS-KSRC)算法用于人脸识别。通过在核特征空间中同时集成稀疏性和数据局部性信息,从而获取具有良好判别性的用于分类的稀疏表示系数。在标准的ORL人脸数据库和Extended Yale B人脸数据库的试验结果表明,本文方法的分类性能优于传统的(KSRC)算法、稀疏表示分类(SRC)算法、局部线性约束编码(LLC)、支持向量机(SVM)、最近邻法(NN)以及最近邻子空间法(NS),用于人脸识别能够取得优越的分类性能。  相似文献   

10.
核稀疏保持投影及生物特征识别应用   总被引:1,自引:0,他引:1  
殷俊  杨万扣 《电子学报》2013,41(4):639-645
稀疏表示系数包含较强的鉴别信息,稀疏保持投影(Sparsity Preserving Projections,SPP)利用稀疏表示系数进行特征提取.本文通过核方法获取高维特征空间的核稀疏表示系数,并利用核稀疏表示系数构造邻接矩阵,提出核稀疏保持投影(Kernel Sparsity Preserving Projections,KSPP).核稀疏表示系数比稀疏表示系数包含更强的鉴别信息,因此KSPP可以比SPP提取更有效的鉴别特征.在多个数据库上的生物特征识别实验,KSPP都取得了不错的实验结果.  相似文献   

11.
提出了一种基于LBP算子和鲁棒稀疏表示的人脸识别方法。首先,提取训练样本和测试样本的LBP特征。其次,在原有稀疏表示分类器(SRC)的基础上添加一个权值矩阵W来解决l1正则化最小二乘问题。最后,利用鲁棒稀疏表示分类器(RSRC)分类测试人脸图像所属类别。在ATT人脸库上进行实验的结果表明,此方法是优于其他经典算法的。  相似文献   

12.
针对辐射源识别中的特征稳定性不高和低信噪比环境适应性不足等问题,提出了一种基于二次时频分布、核协同表示与鉴别投影的识别方法.首先,通过时频变换、稀疏域降噪和二次特征提取的预处理算法降低噪声干扰和特征冗余,以获取高稳定性的二次时频分布特征;然后,采用核协同表示和鉴别投影思想进行降维学习和字典学习,以提升数据低维表征和类间鉴别能力;最后,通过离线训练完成系统优化并用于分类验证.仿真结果表明,二次时频分布特征具备较高稳定性,识别方法具备较强鲁棒性、时效性和适应性;当信噪比为-10dB时,该方法对8类辐射源信号的整体平均识别率达到96.88%.  相似文献   

13.
曹蒙蒙  李新叶  范月坤 《电子科技》2015,28(4):57-60,64
针对现有的车标识别方法无法较好地处理阴影、遮挡、污损等情况下识别率低的问题,提出了基于判别低秩矩阵恢复和稀疏表示的车标识别方法。文中采用判别低秩矩阵恢复来纠正效果较差的训练样本,并通过学习一个低秩投影矩阵,将待测样本特征矩阵投影到相应低秩子空间来恢复干净的测试样本。并采用稀疏表示方式进行分类识别。同时,在Medialab LPR Database数据集上进行了对比实验,实验结果表明,该识别方法的性能要优于当前其他识别方法  相似文献   

14.
该文针对人脸图像受到非刚性变化的影响,如旋转、姿态以及表情变化等,提出一种基于稠密尺度不变特征转换(SIFT)特征对齐(Dense SIFT Feature Alignment, DSFA)的稀疏表达人脸识别算法。整个算法包含两个步骤:首先利用DSFA方法对齐训练和测试样本;然后设计一种改进的稀疏表达模型进行人脸识别。为加快DSFA步骤的执行速度,还设计了一种由粗到精的层次化对齐机制。实验结果表明:在ORL,AR和LFW 3个典型数据集上,该文方法都获得了最高的识别精度。该文方法比传统稀疏表达方法在识别精度上平均提高了4.3%,同时提高了大约6倍的识别效率。  相似文献   

15.
基于低秩子空间恢复的联合稀疏表示人脸识别算法   总被引:4,自引:0,他引:4       下载免费PDF全文
胡正平  李静 《电子学报》2013,41(5):987-991
 针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵 D ,将矩阵 D 分解为低秩矩阵 A 和稀疏误差矩阵 E ,其中 A 表示某类个体的'干净’人脸,严格遵循子空间结构, E 表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵 A 和误差矩阵 E 构造训练字典,将测试样本表示为低秩矩阵 A 和误差矩阵 E 的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高.  相似文献   

16.
基于非负稀疏表示的SAR图像目标识别方法   总被引:1,自引:0,他引:1  
针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输入信号更加相似的原子集合,因此也更加适用于分类问题中。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,采用L1范数的非负稀疏表示分类方法能达到较好的识别性能,并且相对传统方法对存在遮挡情况下的识别问题更稳健。  相似文献   

17.
针对现有显著对象提取算法时间复杂度高和未考虑显著对象的完整性等问题,提出了一种能适应资源有限环境的显著对象提取算法.首先建立了稀疏表示的数学模型,归纳出了显著对象与稀疏表示的对应关系、区域间的边能近似模式和邻接区域间的渐变模式.然后依据对应关系确定候选区域,依据渐变模式和边能近似模式实现显著对象的局部提取.对比实验证实:本文算法高速、精确地捕捉到了显著对象,并能在一定条件下保持显著对象的完整性.  相似文献   

18.
如何利用自然图像本身固有的先验知识来提高重构图像质量是压缩成像系统的一个关键问题.本文在压缩成像系统中融合图像块整体稀疏性与流形特性,提出了一种高质量压缩成像算法.在该算法中,图像块由字典稀疏表示,同时还可由一组与图像块位于同一低维流形上的近邻点线性逼近,从而使稀疏重建信号分布在原始信号所处的流形附近.另外本文充分利用了图像中任意位置处图像块的稀疏性先验知识,使得压缩成像算法在低采样率下能重构出质量较高的图像.  相似文献   

19.
提出分别利用短时傅里叶变换和小波变换进行特征提取和稀疏表示分类(SRC)的车辆识别方法.其中,短时傅里叶变换(STFT)和离散小波变换(DWT)分别从每个传感节点收集到的声音信息中提取车辆的特征向量,SRC通过特征训练集建立一个过完备字典来求解稀疏最优化问题,从而实现分类识别.实验结果表明,短时傅里叶变换提取特征并进行分类的效果高于用小波变换进行特征提取并分类的方法,也高于利用MFCC提取车辆声音特征并进行分类的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号