首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurosteroids bind to unique sites on the GABA(A) receptor complex and modulate receptor function. The effects of neurosteroids on GABA(A) receptors have been well characterized in forebrain regions. However, little is known about their effects on GABA(A) receptors in the medulla, especially those areas involved in autonomic reflex pathways. Stimulation of [3H]flunitrazepam binding to the GABA(A) receptor by two progesterone metabolites, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) and 3beta-hydroxy-5alpha-pregnan-20-one (3beta-OH-DHP), was studied using autoradiographic methods in the medulla and cerebellum of female rats at estrus. [3H]Flunitrazepam binding was enhanced by 3alpha-OH-DHP in every nucleus examined in the medulla and cerebellum. This effect was stereoselective since 3beta-OH-DHP had no effect on binding in any region. No differences were observed in the degree of stimulation of [3H]flunitrazepam binding by 3alpha-OH-DHP among medullary brain regions. However, in the cerebellum, the stimulation of binding was significantly greater in the granular layer than in the molecular layer. Stimulation of [3H]flunitrazepam binding by 3alpha-OH-DHP in nuclei involved in the baroreflex pathways supports previous studies which report that neurosteroids modulate autonomic regulation of blood pressure. These actions may also underlie alterations in autonomic function during pregnancy.  相似文献   

2.
In order to determine if functional changes in N-methyl-D-aspartate receptors and GABAA receptors play a role in the remarkable anoxia tolerance of freshwater turtle brain, we used autoradiographic techniques to assay [3H]MK-801 and [3H]flunitrazepam binding in turtle forebrain after turtles had been subjected to anoxia for 2 or 6 h. The effects of glutamate, glycine, competitive N-methyl-D-aspartate antagonists, glycine antagonists, polyamines, magnesium, and zinc on [3H]MK-801 binding were the same in anoxic and control turtle forebrains. These results indicate that NMDA receptor regulation plays no role in the adaptive responses to anoxia in turtle brain. In contrast, [3H]flunitrazepam binding was significantly increased in the anoxic dorsal cortex and striatum. The most parsimonious explanation for elevated benzodiazepine receptor binding is that the rise in extracellular GABA levels known to accompany anoxia enhances benzodiazepine receptor affinity. It is possible, however, that GABAA receptor upregulation during anoxia increases the effectiveness of the inhibitory action of released GABA and contributes to the anoxia tolerance of turtles.  相似文献   

3.
BACKGROUND: Potentiation by general anesthetics of gamma-aminobutyric acid (GABA)-mediated inhibitory transmission in the central nervous system is attributed to GABA(A) receptor-mediated postsynaptic effects. However, the role of presynaptic mechanisms in general anesthetic action is not well characterized, and evidence for anesthetic effects on GABA release is controversial. The effects of several intravenous general anesthetics on [3H]GABA release from rat cerebrocortical synaptosomes (isolated nerve terminals) were investigated. METHODS: Purified synaptosomes were preloaded with [3H]GABA and superfused with buffer containing aminooxyacetic acid and nipecotic acid to inhibit GABA metabolism and reuptake, respectively. Spontaneous and elevated potassium chloride depolarization-evoked [3H]GABA release were evaluated in the superfusate in the absence or presence of various anesthetics, extracellular Ca2+, GABA receptor agonists and antagonists, and 2,4-diaminobutyric acid. RESULTS: Propofol, etomidate, pentobarbital, and alphaxalone, but not ketamine, potentiated potassium chloride-evoked [3H]GABA release (by 1.3 to 2.9 times) in a concentration-dependent manner, with median effective concentration values of 5.4 +/- 2.8 microM (mean +/- SEM), 10.1 +/- 2.1 microM, 18.8 +/- 5.8 microM, and 4.4 +/- 2.0 microM. Propofol also increased spontaneous [3H]GABA release by 1.7 times (median effective concentration = 7.1 +/- 3.4 microM). Propofol facilitation of [3H]GABA release was Ca2+ dependent and inhibited by bicuculline and picrotoxin, but was insensitive to pretreatment with 2,4-diaminobutyric acid, which depletes cytoplasmic GABA pools. CONCLUSIONS: Low concentrations of propofol, etomidate, pentobarbital, and alphaxalone facilitated [3H]GABA release from cortical nerve terminals. General anesthetics may facilitate inhibitory GABA-ergic synaptic transmission by a presynaptic mechanism in addition to their well-known postsynaptic actions.  相似文献   

4.
1. In vitro receptor autoradiography using [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding to sections of rat brain has been characterized and shown to most likely represent labelling of group III metabotropic glutamate receptors. 2. Specific [3H]-L-AP4 binding to rat brain sections was observed at high densities in the molecular layer of the cerebellar cortex and the outer layer of the superior colliculus. Moderate levels were observed throughout the cerebral cortex, in the molecular layer of the hippocampal dentate gyrus, in thalamus, striatum, substantia nigra and in the medial geniculate nucleus. Low levels of [3H]-L-AP4 binding were found in other regions of the hippocampal formation, in the entorhinal cortex and the granule cell layer of cerebellum. 3. Inhibitors of sodium- or calcium/chloride-dependent glutamate uptake did not displace [3H]-L-AP4 binding to rat brain sections indicating that the observed binding does not represent [3H]-L-AP4 uptake via these carriers. Furthermore, in contrast to [3H]-L-AP4 uptake into cerebellar membranes, [3H]-L-AP4 binding to brain sections was sensitive to guanosine-5'-O-(3-thio)trisphosphate-gamma-S. 4. In the molecular layer of the cerebellar cortex, [3H]-L-AP4 binding showed a maximal binding density (Bmax) of 0.52+/-0.06 pmol mg(-1) tissue and an affinity (Kd) of 346 nM. The rank order of affinity for displacement of [3H]-L-AP4 binding to rat brain sections was: L-AP4 > L-serine-O-phosphate > glutamate > (L)-2-aminomethyl-4-phosphonobutanoate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate which is in agreement with a group III metabotropic glutamate receptor pharmacology.  相似文献   

5.
We have investigated the mechanisms for enhancement of nitric oxide (NO)-evoked gamma-[3H]aminobutyric acid ([3H]GABA) release from mouse cerebrocortical neurons by hydroxyl radical (.OH) scavengers. .OH scavengers, such as N,N'-dimethylthiourea (DMTU), uric acid, and mannitol, dose-dependently facilitated NO-evoked [3H]GABA release evoked by NO liberated from S-nitroso-N-acetylpenicillamine. Ionomycin-evoked [3H]GABA release, which was significantly inhibited by hemoglobin and an NO synthase, N(G)-methyl-L-arginine, was also enhanced by DMTU. These results indicate that GABA release evoked by both endogenous and exogenous NO is facilitated by .OH scavengers. These enhancing actions of .OH scavengers were completely abolished by Ca2+ removal from incubation buffer and by an L-type voltage-dependent Ca2+ channel (VDCC) inhibitor, nifedipine, whereas each .OH scavenger showed no effects on [3H]GABA release in the absence of NO. Inhibitors for P/Q- and N-type VDCCs had no effects on the enhancement. NO-induced 45Ca2+ influx was also dose-dependently enhanced by .OH scavengers, although 45Ca2+ influx was not altered by .OH scavengers in the absence of NO. Nifedipine abolished this enhancement of the NO-induced 45Ca2+ influx by .OH scavengers. These results indicate that the removal of .OH by its scavengers facilitates the NO-evoked [3H]GABA release dependent on Ca2+ and that this enhancement is due to the increase in Ca2+ influx via L-type VDCCs.  相似文献   

6.
This study sought to determine the potential role of nitric oxide (NO) in N-methyl-D-aspartate (NMDA)-stimulated efflux of [14C] gamma-aminobutyric acid (GABA) and [3H]acetylcholine from striatal slices in vitro. In Mg2+-free buffer, NMDA-stimulated [14C]GABA and [3H]acetylcholine release were inhibited by the guanylate cyclase inhibitor, 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and, to a lesser extent, by the nitric oxide synthase inhibitor, nitroarginine (N-Arg). Since reversal of catecholamine transporters previously has been implicated in the mechanism underlying NO-induced catecholamine release, we used the GABA transport inhibitor, 1-(2-(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine-carboxylic acid hydrochloride (NNC-711), to address the role of GABA transport in NArg-sensitive NMDA-induced release. NNC-711 inhibited NMDA-stimulated [14C]GABA efflux by 50%, confirming our previous report that NMDA-stimulated GABA release is partially dependent on reversal of the transporter. The effect of N-Arg in the presence of NNC-711 was similar to its effect in the absence of the transport inhibitor, suggesting that reversal of the transporter is not involved in the NO component of NMDA-stimulated [14C]GABA release. These data suggest that glutamatergic transmission through striatal NMDA receptors is partially mediated through activation of the NO/guanylate cyclase pathway and that this mechanism may contribute to the tetrodotoxin sensitivity of NMDA-induced release of GABA and acetylcholine in the striatum.  相似文献   

7.
Autoradiographic techniques were used to investigate the characteristics of tritiated inositol(1,4,5)trisphosphate ([3H]IP3) and inositol (1,3,4,5) tetrakisphosphate ([3H]IP4) binding to human brain. In brain sections [3H]IP3 exhibited a two-site binding with KD values of 87 nM and 9.3 microM respectively for the higher and lower affinity sites. [3H]IP4 also bound to two sites with KD values of 43 nM and 1.4 microM, respectively. With the conditions fixed in this study, [3H]IP3 and [3H]IP4 autoradiography in the cortex, caudate, hippocampus and cerebellum were performed. The most prominent [3H]IP3 binding among these regions was found in the cerebellum, particularly in the molecular layer. Within the hippocampus, the subiculum and the CA1 region showed much more prominent binding than the other subfields. [3H]IP4, binding was fairly homogeneous in the regions studied, with the exception of a slightly higher binding in the molecular layer of the cerebellum.  相似文献   

8.
Saturable specific binding of glycine to synaptosomal membranes from plexiform layers of the retina has been described, which seems to correspond to the modulatory site on NMDA-receptors (26). Spermine inhibited specific [3H]glycine binding to membranes from synaptosomal fractions from the outer (P1) and the inner (P2) plexiform layers of 1-3 day-old chick retinas in a dose-dependent manner with an IC50 = 35 microM for the P1 fraction and 32 microM for the P2 fraction. Kinetic experiments and non-linear regression analysis of [3H]glycine-specific binding showed a Kd approximately 100-150 nM in both fractions, and a higher Bmax (4.11 +/- 0.47 pmol/mg protein) for the inner plexiform layer compared to the outer plexiform layer (Bmax = 2.76 +/- 0.25 pmol/mg protein). Strychnine-insensitive [3H]glycine binding was inhibited by 100 microM spermine, due to a reduction in Bmax (P1 = 0.84 +/- 0.16 pmol/mg protein; P2 = 0.81 +/- 0.16 pmol/mg protein) without affecting the Kd. Association and dissociation constants in the absence and presence of 50 microM spermine remained unchanged. Results demonstrate the presence of a single modulatory site for spermine on NMDA receptors, in both synaptic layers of the chick retina.  相似文献   

9.
1. The radiolabelled bicyclic dinitrile, [3H]-3,3-bis-trifluoromethyl-bicyclo[2.2.1]heptane-2,2-dicarbonitrile ([3H]-BIDN), exhibited, specific binding of high affinity to membranes of the southern corn rootworm (Diabrotica undecimpunctata howardi) and other insects. A variety of gamma-aminobutyric acid (GABA) receptor convulsants, including the insecticides heptachlor (IC50, 35 +/- 3 nM) and dieldrin (IC50, 93 +/- 7 nM), displaced [3H]-BIDN from rootworm membranes. When tested at 100 microM, 1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]oct ane(EBOB), 4-t-butyl-2,6,7-trioxa-1-phosphabicy-clo[2.2.2]octane-1-thio ne (TBPS), 1-phenyl-4-t-butyl-2,6,7-trioxabicyclo[2.2.2]octane (TBOB) and picrotoxin failed to displace 50% of [3H]-BIDN binding to rootworm membranes indicating that the bicyclic dinitrile radioligand probes a site distinct from those identified by other convulsant radioligands. 2. Dissociation studies showed that dieldrin, ketoendrin, toxaphene, heptachlor epoxide and alpha and beta endosulphan displace bound [3H]-BIDN from rootworm membranes by a competitive mechanism. 3. Rat brain membranes were also shown to possess a population of saturable, specific [3H]-BIDN binding sites, though of lower affinity than in rootworm and with a different pharmacological profile. Of the insecticidal GABAergic convulsants that displaced [3H]-BIDN from rootworm, cockroach (Periplaneta americana) and rat brain membranes, many were more effective in rootworm. 4. Functional GABA-gated chloride channels of rootworm nervous system and of cockroach nerve and muscle were blocked by BIDN, whereas cockroach neuronal GABA(B) receptors were unaffected. 5. Expression in Xenopus oocytes of either rat brain mRNA, or cDNA-derived RNA encoding a GABA receptor subunit (Rdl) that is expressed widely in the nervous system of Drosophila melanogaster resulted in functional, homo-oligomeric GABA receptors that were blocked by BIDN. Thus, BIDN probes a novel site on GABA-gated Cl- channels to which a number of insecticidally-active molecules bind.  相似文献   

10.
The effect of the GTP-analogue guanylyl 5'-imidodiphosphate (Gpp[NH]p) on [3H]forskolin binding was studied in rat brain using autoradiography. In the striatum, 100 microM Gpp[NH]p produced a 40% increase in binding, whereas a decrease of about 30% was observed with low Gpp[NH]p concentrations (0.1-1 microM). In the molecular layer of the cerebellum all concentrations of Gpp[NH]p decreased [3H]forskolin binding. The decrease in binding disappeared in both striatum and the molecular layer of cerebellum in sections pretreated with 100 microM N-ethylmaleimide (NEM) for 10 min. NEM pretreatment did not significantly affect the stimulation of [3H]forskolin binding by micromolar concentrations of Gpp[NH]p in the striatum, but reversed the decrease observed in the molecular layer of the cerebellum, to an increase. Based on these data we suggest that the effects of the GTP-analogue Gpp[NH]p on [3H]forskolin binding may involve both Gs and Gi, where a stimulation produces an increase and decrease in binding respectively. The regional effects of Gpp[NH]p may reflect differences in the responsiveness of adenylyl cyclase to Gs and Gi-mediated effects.  相似文献   

11.
Specific binding of [3H]imipramine and [3H]paroxetine was simultaneously examined in human brains (frontal cortex, temporal cortex, cingulate cortex, hypothalamus, hippocampus and amygdala) from 11 controls and 11 depressed suicide victims. A single saturable high affinity site was obtained for both radioligands. Age was not related to significant changes in [3H]imipramine and [3H]paroxetine binding parameters, which indicates the stability of the brain serotonergic system with increasing age. A major finding of the present study concerns the existence of a significant decrease in the maximum number (Bmax) of [3H]imipramine binding sites in hippocampus from depressed suicides as compared with the control group, without changes in the binding affinity (Kd). In contrast, when [3H]paroxetine was used as radioligand, no changes in either Bmax or Kd were detected in any of the brain regions studied. These findings suggest that [3H]imipramine may be a better marker than [3H]paroxetine when alterations in the presynaptic serotonergic uptake site are to be detected.  相似文献   

12.
The binding of L-2-[3H]amino-4-phosphonobutyrate ([3H]L-AP4) was examined in brain sections of wild-type mice and mice lacking the mGluR4 subtype of metabotropic glutamate receptors (mGluRs). Very high relative densities of [3H]L-AP4 binding were observed in the molecular layer of the cerebellar cortex, the nucleus basalis, the outer layer of the superior colliculus, and the substantia nigra. In mGluR4 knock-out mice, very low levels of binding were observed in these regions. The moderate levels of binding observed with wild-type mice in the molecular layer of the hippocampal dentate gyrus and in the thalamus were absent in mGluR4 knock-out mice. In contrast, the moderate levels observed in most of the cerebral cortex, caudate putamen, and globus pallidus were not different in mGluR4 knock-out mice compared with wild-type. In these regions, mGluR8 is likely to be labeled by [3H]L-AP4 because mGluR8 is expressed in such brain regions and, like mGluR4, has high affinity for L-AP4. We conclude that mGluR4 contributes substantially to the high-affinity binding site for [3H]L-AP4 in several regions of mouse brain, including cerebellar cortex, nucleus basalis, thalamus, superior colliculus, substantia nigra, and hippocampal dentate gyrus.  相似文献   

13.
The distribution and relative densities of imidazoline-receptor binding sites (I-RBS) and monoamine oxidase (MAO)-A and -B enzyme(s) in rat and rabbit kidney were compared autoradiographically using fixed nanomolar concentrations of [3H]rilmenidine and [3H]2-(benzofuranyl)-2-imidazoline ([3H]2-BFI) to label I-RBS, and [3H]RO41-1049 and [3H]RO19-6327 to label MAO-A and -B isoenzymes, respectively. In rat kidney, high densities of I-RBS labelled by [3H]rilmenidine were observed in the cortex and outer stripe (120-280 fmol/mg tissue), in contrast to low I-RBS densities labelled by [3H]2-BFI (<4 fmol/mg). A relatively high density of [3H]RO41-1049 binding to MAO-A enzyme was present in all regions of the rat kidney (160-210 fmol/mg) compared with a low density of [3H]RO19-6327 binding to MAO-B (< 25 fmol/mg). Comparison of MAO-A and -B distributions with that of [3H]rilmenidine-labelled I-RBS strongly suggests a lack of association in rat kidney. Similarly, the extremely low densities of [3H]2-BFI-labelled I2-RBS in rat kidney contrasts with the density of MAO-A, but is consistent with the low density of MAO-B. Rabbit kidney cortex and outer stripe contained high relative densities of [3H]rilmenidine-labelled I-RBS (200-215 fmol/mg) and [3H]2-BFI-labelled I2-RBS (45-60 fmol/mg) with lower densities in the inner stripe and inner medulla (< or = 100 and 30 fmol/mg respectively). A high density of MAO-A binding was observed in the inner stripe (515 fmol/mg) with lower levels in the cortex and outer stripe (100-240 fmol/mg), while high densities of MAO-B binding were observed in the cortex and outer stripe (290-450 fmol/mg) with lower levels in the inner stripe (65 fmol/mg). The correlation between the localization of [3H]rilmenidine-labelled I-RBS and [3H]RO19-6327-labelled MAO-B in rabbit kidney (r = 0.87, P = 0.057) suggest that [3H]rilmenidine may label a binding site co-existent with MAO-B, but not MAO-A (n.s.), in this tissue, but rilmenidine did not inhibit [3H]RO41-1049 or [3H]RO19-6327 binding. The distribution of [3H]2-BFI-labelled I2-RBS overlapped the combined distributions of both MAO-A and -B isoenzymes, suggesting that [3H]2-BFI may label sites on both enzymes in the rabbit, but [3H]2-BFI binding only correlated with [3H]RO19-6327 (r = 0.84, P = 0.07), not [3H]RO41-1049 binding (n.s.). Moreover, 2-BFI only inhibited [3H]RO19-6327, not [3H]RO41-1049 binding. These data are consistent with reports that I2-RBS are located on MAO-B and allosterically influence the catalytic site. The relationship of [3H]rilmenidine- and [3H]2-BFI-labelled I-RBS and the identity of non-MAO-associated [3H]rilmenidine-labelled I-RBS requires further investigation.  相似文献   

14.
In rat cortical primary cultures, group II- and III-metabotropic glutamate receptor-selective agonists concentration-dependently reduced KCl-induced [3H]GABA release, with IC50 values of 11 nM for LY354740, 80 nM for L(+)-2-amino-4-phosphonobutyric acid (L-AP4), 180 nM for DCG-IV, and 330 nM for L-SOP. The group II antagonists, LY341495 and EGLU, reversed the effect of LY354740, and the group III antagonist MTPG reversed the effect of L-AP4. In the presence of omega-conotoxin GVIA, LY354740 inhibited the remaining [3H]GABA release, whereas L-AP4 was inactive. In contrast, in the presence of nifedipine, L-AP4 inhibited the remaining [3H]GABA release, but LY354740 was no longer active. The PKA inhibitor, H89, blocked the effects of both L-AP4 and LY354740, whereas the PKC inhibitor Ro 31-8220 blocked only the effect of LY354740. Both Ro 31-8220 and H89 reduced the [3H]GABA release to 60% of control. In whole-cell, voltage-clamp experiments, LY354740 and L-AP4 inhibited voltage-gated calcium channel currents with IC50 values of 28 nM and 22 microM, respectively. The results suggest that, in these cells, KCl-induced [3H]GABA release is modulated by two different mechanisms, one involving group II receptors and a direct control of the Ca2+ channel activity, and the other mediated by group III receptors and possibly involving a regulation located downstream of the Ca2+ channel activation.  相似文献   

15.
We investigated age-related changes in excitatory amino acid transport sites and FK506 binding protein (FKBP) in 3-week-, and 6-, 12-, 18- and 24-month-old Fischer 344 rat brains using receptor autoradiography. Sodium-dependent D-[3H]aspartate and [3H]FK506 were used to label excitatory amino acid transport sites and immunophilin (FKBP), respectively. In immature rats (3-week-old), sodium-dependent D-[3H]aspartate binding was lower in the frontal cortex, parietal cortex, striatum, nucleus accumbens, whole hippocampus, thalamus and cerebellum as compared to adult animals (6-month-old), whereas [3H]FK506 binding was significantly lower in only the hippocampus, thalamus and cerebellum. 3[H]FK506 binding exhibited no significant change in the brain regions examined during aging. However, sodium-dependent D-[3H]aspartate binding showed a conspicuous reduction in the substantia nigra in 18-month-old rats. Thereafter, a significant reduction in sodium-dependent D-[3H]aspartate binding was found in the thalamus, substantia nigra and cerebellum in 24-month-old rats. Other regions also showed about 10-25% reduction in sodium-dependent D-[3H]aspartate binding. The results indicate that excitatory amino acid transport sites are more susceptible to aging process than immunophilin. Further, our findings demonstrate the conspicuous differences in the developmental pattern between excitatory amino acid transport sites and immunophilin in immature rat brain.  相似文献   

16.
We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80% of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

17.
Previous research has suggested that rats tested at 28 to 30 days of age show a marked subsensitivity to the sedative effects of ethanol. In the present study, rats of different ages were tested for aerial righting following acute ethanol (3 g/kg) treatment. These results were compared with the effects of the atypical benzodiazepine zolpidem (3 and 5 mg/kg) and pentobarbital (10 and 15 mg/kg). Animals tested at 25, 28, or 35 days of age were significantly less impaired by ethanol than preweanling rats (age 20 days) or older rats (age 65 to 75 days), whereas animals tested at 25 or 28 days of age were less impaired by the higher dose of zolpidem. With pentobarbital, the most distinct age-related trend was greater impairment in 20-day-old rats. Because ethanol may be active at the same type I GABA(A) receptor site selectively labeled by [3H]zolpidem, levels of [3H]zolpidem binding were determined for rats of different ages. Although some brain regions showed progressive increases in binding of [3H]zolpidem across development, other regions demonstrated increased binding from day 12 or 17 to day 20, then a plateau of binding levels across days 20, 25, and 28, with further increases occurring by day 36 or day 60. This pattern was observed in the cingulate cortex, medial septal nucleus, globus pallidus, inferior colliculus, red nucleus, and cerebellum. Overall, the results indicate that the period of subsensitivity to the sedative effects of ethanol is coincident with a change in the developmental pattern of GABA(A) receptor sites targeted by [3H]zolpidem.  相似文献   

18.
The present study addresses the possibility that there are different cocaine-related and mazindol-related binding domains on the dopamine transporter (DAT) that show differential sensitivity to cations. The effects of Zn2+, Mg2+, Hg2+, Li+, K+, and Na+ were assessed on the binding of [3H]mazindol and [3H]WIN 35,428 to the human (h) DAT expressed in C6 glioma cells under identical conditions for intact cell and membrane assays. The latter were performed at both 0 and 21 degrees C. Zn2+ (30-100 microM) stimulated binding of both radioligands to membranes, with a relatively smaller effect for [3H]mazindol; Mg2+ (0.1-100 microM) had no effect; Hg2+ at approximately 3 microM stimulated binding to membranes, with a relatively smaller effect for [3H]mazindol than [3H]WIN 35,428 at 0 degrees C, and at 30-100 microM inhibited both intact cell and membrane binding; Li+ and K+ substitution (30-100 mM) inhibited binding to membranes more severely than to intact cells; and Na+ substitution was strongly stimulatory. With only a few exceptions, the patterns of ion effects were remarkably similar for both radioligands at both 0 and 21 degrees C, suggesting the involvement of common binding domains on the hDAT impacted similarly by cations. Therefore, if there are different binding domains for WIN 35,428 and mazindol, these are not affected differentially by the cations studied in the present experiments, except for the stimulatory effect of Zn2+ at 0 and 21 degrees C and Hg2+ at 0 degrees C.  相似文献   

19.
Binding characteristics of alpha 2-adrenoceptors in rat cerebral cortical membranes were compared using the antagonist radioligands [3H]idazoxan, [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002), and the partial agonist radioligand [125I]2-[2,6-(dichloro-4-iodophenyl)imino]imidazoline ([125I]iodoclonidine). With [3H]RX821002 and alpha 2-adrenoceptor subtype-selective competitors, both alpha 2A/D- and alpha 2C-adrenoceptor subtypes were detected, suggesting rat cortical membranes contain approximately 90% alpha 2A/D-adrenoceptor subtype and 10% alpha 2C-adrenoceptor subtype. Only alpha 2A/D-adrenoceptors were detected with [3H]idazoxan and [125I]iodoclonidine. All three radioligands bound to a single high affinity site (Kd = 0.3-1.6 nM). However, the densities of sites labeled by [3H]idazoxan and [125I]iodoclonidine were 50% greater than the density labeled by [3H]RX821002, likely representing non-adrenoceptor binding sites. The density of [125I]iodoclonidine binding sites in glycylglycine buffer was similar to that labeled by [3H]RX821002. These results suggest that: (1) alpha 2A/D-adrenoceptors are the predominant subtype in rat cerebral cortex, (2) demonstrate that the small number of alpha 2C-adrenoceptors in this tissue can be detected using prazosin to displace [3H]RX821002 binding, and (3) non-adrenoceptor binding with [125I]iodoclonidine can be minimized with the use of glycylglycine buffer.  相似文献   

20.
The alpha subunit of the gamma-aminobutyric acid type A (GABA(A)) receptor is known to be photoaffinity labeled by the classical benzodiazepine agonist, [3H]flunitrazepam. To identify the specific site for [3H]flunitrazepam photoincorporation in the receptor subunit, we have subjected photoaffinity labeled GABA(A) receptors from bovine cerebral cortex to specific cleavage with cyanogen bromide and purified the resulting photolabeled peptides by immunoprecipitation with an anti-flunitrazepam polyclonal serum. A major photolabeled peptide component from reversed-phase high performance liquid chromatography of the immunopurified peptides was resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The radioactivity profile indicated that the [3H]flunitrazepam photoaffinity label is covalently associated with a 5.4-kDa peptide. This peptide is glycosylated because treatment with the enzyme, peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, reduced the molecular mass of the peptide to 3.2 kDa. Direct sequencing of the photolabeled peptide by automated Edman degradation showed that the radioactivity is released in the twelfth cycle. Based on the molecular mass of the peptides that can be generated by cyanogen bromide cleavage of the GABA(A) receptor alpha subunit and the potential sites for asparagine-linked glycosylation, the pattern of release of radioactivity during Edman degradation of the photolabeled peptide was mapped to the known amino acid sequence of the receptor subunit. The major site of photoincorporation by [3H]flunitrazepam on the GABA(A) receptor is shown to be alpha subunit residue His102 (numbering based on bovine alpha 1 sequence).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号