首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3−d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol−1 at a threshold temperature of ca. 320 °C. In situ XPS near-ambient pressure (0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 °C. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 °C.  相似文献   

2.
Thermal and mechanical properties of polycrystalline La1−xAxNbO4 (x = 0, 0.005, 0.02 and A = Ca, Sr and Ba) are reported. The materials possess a ferroelastic to paraelastic phase transition close to 500 °C, and the linear thermal expansion is significantly lower (8.6 ± 0.5 × 10−6 °C−1) for the paraelastic phase compared to the ferroelastic phase (15 ± 3 × 10−6 °C−1). The hardness was significantly higher for acceptor doped materials (6 GPa) compared to pure LaNbO4 (3 GPa) due to a significantly smaller average grain size. The fracture toughness of La0.98Sr0.02NbO4, measured by single edge V-notched beam method, was 1.7 ± 0.2 MPa m1/2 independent of temperature up to 600 °C. The ferroelastic properties of the materials were confirmed by non-linear relationships between stress and strain during compression/decompression, a remnant strain after decompression and the presence of ferroelastic domains. The mechanical properties of LaNbO4-based materials are discussed with focus on ferroelasticity, microcracking due to crystallographic anisotropy and pinning of ferroelastic domain boundaries.  相似文献   

3.
By addition of LiF-containing sintering additives to commercial BaTiO3 powder, more than 98% of the theoretical density was reached at a sintering temperature of 900 °C both on powder compacts and laminates. Dielectric measurements were performed on ceramic samples in the temperature and frequency ranges from −20 °C to 125 °C and from 103 to 106 Hz, respectively. High relative permittivity (r  3160) and low dielectric loss (tan δ  0.014) were measured for tapes of the favoured material. The breakdown strength for tapes with a thickness of about 80 μm is 30 kV/mm. The microprobe analysis showed, that no interfacial reaction between the dielectric layer and the Ag-electrode had occurred.The newly developed barium titanate ceramics completely densifying at 900 °C turned out to be promising for integration of buried capacitors in LTCC multilayers.  相似文献   

4.
Because the high frequency operation of a field emission triode amplifier is dictated by the cutoff frequency and not the electron transit time, a high ratio of transconductance, gm to the overlapping interelectrode capacitance, Cg is the desired outcome. Consequently, to achieve high frequency performance of the CNT amplifier array in this study, Cg was reduced by performing a dual-mask photolithography process to minimize the overlapping gate area, and, the insulating layer's thickness was increased. Moreover, wedge-shaped CNT emitter arrays are employed to increase emission sites, resulting in return higher gm. Both dc and ac performance of the amplifier were characterized. The triode amplifier array exhibited a high current of  0.32 mA (74 mA/cm2), gm of  63 μS and voltage gain of  18 dB. Frequency response of the triode amplifier up to 20 kHz was also investigated. A theoretical cutoff frequency of > 70 MHz could be achieved with proper shielding of the test setup.  相似文献   

5.
Mesoporous nanocrystalline anatase was prepared hydrothermally employing P123 as structure-directing agent. Ethylene glycol was used as a key synthesis parameter to fine tune the morphology, crystal size and pore size of the resultant mesophases. The incorporation of EG in the synthesis gel resulted in the formation of 1–2 μm sphere-like shapes and led to an increase in the specific surface area from 95 to 170 m2/g, decrease in the average pore size from 11 to 4.8 nm, and decrease in the average crystallite size from 17 to 12 nm. These mesophases were used as photocatalysts for the UV degradation of methylene blue and methyl orange. The mesoporous anatase phases photodegraded MB 1.5–3× faster than commercially available P25 and showed limited photocatalytic behavior for methyl orange.  相似文献   

6.
Effect of pre-nucleation techniques on enhancing nucleation density and the adhesion of ultra-nanocrystalline diamond (UNCD) deposited on the Si substrates at low temperature were investigated. Four different pre-nucleation techniques were used for depositing UNCD films: (i) bias-enhanced nucleation (BEN); (ii) pre-carburized and then ultrasonicated with diamond powder solution (PC-U); (iii) ultrasonicated with diamond and Ti mixed powder solution (U-m); (iv) ultrasonicated with diamond powder solution (U). The nucleation density is lowest for UNCD/U-substrate films ( 108 grains/cm2), which results in roughest surface and poorest film-to-substrate adhesion. The UNCD/PC-U-substrate films show largest nucleation density ( 1 × 1011 grains/cm2) and most smooth surface (8.81 nm-rms), whereas the UNCD/BEN-substrate films exhibit the strongest adhesion to the Si substrates (critical loads =  67 mN). Such a phenomenon can be ascribed to the high kinetic energy of the carbon species, which easily form covalent bonding, Si–C, and bond strongly to both the Si and diamond.  相似文献   

7.
Lamellar thicknesses and cross-hatching frequencies in α-isotactic polypropylene have been measured for two series of fractions using linear nucleation to provide large arrays of oriented lamellae in row structures for sampling. One series is of high tacticity polymers differing in molecular mass from 6 × 104 to 8 × 105, the other has low and high tacticity materials for 9 × 104 and 2 × 105 masses. These have allowed the differing influences of both molecular mass and tacticity to be evaluated. Lamellar thicknesses increase with molecular mass to 5 × 105 then level off. This is consistent with the fold surface increasing its free energy by 20% for longer molecules as its structure becomes progressively more complex. Except for the lowest fraction, the thickness of cross-hatching lamellae is less than that of its radial neighbours because of differential thickening. The frequency of cross-hatching is greatest for the least tactic fraction but decreases linearly with molecular length. This dependence suggests that chain ends play a key role in initiation probably by laying down the first segment in epitaxial orientation. This suggestion could also account for the reduced thermal stability of spherulite centres and regions of high cross-hatching density where there is competition for chain ends between thickening and cross-hatching. The curvature of lamellae at the very end of a row mirrors the dependence of lamellae thickness with molecular mass and allows cilia pressure, the factor strongly involved in causing the lamellar divergence underlying spherulitic growth, to be estimated as 100 Pa.  相似文献   

8.
An analogous study to 2:1 type montmorillonite [Tombácz, E., Szekeres, M., 2004. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 27, 75–94.] was performed on 1:1 type kaolinite obtained from Zettlitz kaolin. Clay minerals are built up from silica tetrahedral (T) and alumina octahedral (O) layers. These lamellar particles have patch-wise surface heterogeneity, since different sites are localized on definite parts of particle surface. pH-dependent charges develop on the surface hydroxyls mainly at edges besides the permanent negative charges on silica basal plane due to isomorphic substitutions. Electric double layers (edl) with either constant charge density on T faces (silica basal planes) or constant potential at constant pH on edges and O faces (hydroxyl-terminated planes) form on patches. The local electrostatic field is determined by the crystal structure of clay particles, and influenced by the pH and dissolved electrolytes. The acid–base titration of Na-kaolinite suspensions showed analogous feature to montmorillonite. The initial pH of suspensions and the net proton surface excess vs. pH functions shifted to the lower pH with increasing ionic strength indicating the presence of permanent charges in both cases, but these shifts were smaller for kaolinite in accordance with its much lower layer charge density. The pH-dependent charge formation was similar, positive charges in the protonation reaction of (Si–O)Al–OH sites formed only at pHs below  6–6.5, considered as point of zero net proton charge (PZNPC) of kaolinite particles. So, oppositely charged surface parts on both clay particles are only below this pH, therefore patch-wise charge heterogeneity exists under acidic conditions. Electrophoretic mobility measurements, however, showed negative values for both clays over the whole range of pH showing the dominance of permanent charges, and only certain decrease in absolute values, much larger for kaolinite was observed with decreasing pH below pH  6. The charge heterogeneity was supported by the pH-dependent properties of dilute and dense clay suspensions with different NaCl concentrations. Huge aggregates were able to form only below pH  7 in kaolinite suspensions. Coagulation kinetics measurements at different pHs provided undisputable proofs for heterocoagulation of kaolinite particles. Similarly to montmorillonite, heterocoagulation at pH  4 occurs only above a threshold electrolyte concentration, which was much smaller, only  1 mmol l− 1 NaCl for kaolinite, than that for montmorillonite due to the substantial difference in particle geometry. The electrolyte tolerance of both clay suspensions increased with increasing pH, pH  6–6.5 range was sensitive, and even a sudden change occurred above pH  6 in kaolinite. There was practically no difference in the critical coagulation concentration of kaolinite and montmorillonite (c.c.c. 100 mmol l− 1 NaCl) measured in alkaline region, where homocoagulation of negatively charged lamellae takes place. Rheological measurements showed shear thinning flow character and small thixotropy of suspensions at and above pH  6.7 proving the existence of repulsive interaction between uniformly charged particles in 0.01 M NaCl for both clays. The appearance of antithixotropy, the sudden increase in yield values, and also the formation of viscoelastic systems only at and below pH  6 verify the network formation due to attraction between oppositely charged parts of kaolinite particles. Under similar conditions the montmorillonite gels were thixotropic with significant elastic response.  相似文献   

9.
The preparation of TiO2 nanofilm was conducted on common glass via the sol–gel process. Glacial acetic acid and diethanolamine were used as inhibitors to prepare acidic and alkaline TiO2 sol, respectively. XRD, SEM, and EDS characterization showed that the film prepared from acidic TiO2 sol had a narrow particle size distribution of 15–30 nm and relatively poor particle crystallization while in the case of the film from alkaline TiO2 sol the nanoparticles were in a wide range of 10–80 nm and well crystallized. The photolysis evaluation through MO degradation revealed that the film from acidic sol possessed apparently better photocatalytic activity than that from alkaline sol. Heat treatment with longer time led to a 50% increase of the photocatalytic activity for the film.  相似文献   

10.
Growth regimes of C:Ni (30 at.%) composite thin films grown by ion beam co-sputtering in the temperature range of RT-500 °C are investigated. The combination of elastic recoil detection analysis, X-ray diffraction, transmission electron microscopy and Raman spectroscopy employing two excitation wavelengths was used to characterize the coexisting carbon and nickel constituents of the composite structure. Three growth regimes are identified characterized by different Ni nanoparticle shape (granular, columnar) and crystal structure (Ni3C or fcc Ni). The comparison of the Raman spectroscopy results from carbon reference and C:Ni (30 at.%) thin films shows that the presence of Ni enhances significantly the 6-fold ring clustering process at temperatures as low as RT, while at higher temperatures it favors ordering within the 6-fold ring clusters. The enhancement occurs independently on Ni nanoparticle size, shape or phase and is related to processes taking place on the surface of the growing film growth rather than in the bulk.  相似文献   

11.
(K0.5−xLix)Na0.5(Nb1−ySby)O3 (KLNNSxy, x = 0–4 mol% and y = 0–8 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The denser microstructure and better electrical properties of the ceramics were obtained as compared to the pure K0.5Na0.5NbO3 ceramic. The temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the KLNNS2.5–5 ceramic exhibits good electrical properties (kp  49%, k31  30% and , tan δ  0.019), and possesses good temperature stability in the temperature range of −40 to 85 °C. The related mechanisms for improved electrical properties and temperature stability were also discussed. Moreover, buzzers based on the KLNNS2.5–5 ceramic have been fabricated and their characterization is presented. These results show that the KLNNS2.5–5 ceramic is a promising lead-free material for practical application in buzzers.  相似文献   

12.
Spherical silica nanoparticles containing fluorescent trimethine indocyanine dyes (λabs = 547 nm, λem = 570 nm) were prepared using a water-in-oil microemulsion method. The nanoparticles were of 50 nm diameter and were almost monodispersed in aqueous solution at pH 5.5. Entrapment of dye molecules in the silica matrix stabilised photoemission over several hours of continuous irradiation. The photoemission intensity of the indocyanine was increased 13-fold over that recorded in solution. As each nanoparticle contained 110 dye molecules, the photoemission brightness of each particle was enhanced by three orders of magnitude. The fluorescent nanoparticles have been tested as imaging tools in in vitro tests. As an example of non-macrophagic cells, a highly differentiated neuronal cell line (GT1-7) was used and the results showed that the prepared nanoparticles can be incorporated into these cells with no apparent toxicity for up to three days.  相似文献   

13.
TiO2–SiO2 monolithic aerogels were homogeneously prepared using sol–gel method. Critical point of drying of TiO2–SiO2 gels with ethanol was studied for 30, 60, 90 and 120 min. Subsequently, the gels were dried with supercritical ethanol, resulting in amorphous aerogels that crystallized following heat treatment at 550 °C from 1 to 5 h. The TiO2–SiO2 aerogels were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and surface area measurements. The molar ratio of SiO2:TiO2 was 6 and the synthetic strategy revealed that TiO2–SiO2 aerogel, had a surface area 868 m2/g, particle size 40 nm, density 0.17 g/cm3 and 80% porosity. The finding indicated that from economic point of view, TiO2–SiO2 gel should be supercritical dried for 30 min and heat-treated for 5 h. The TiO2–SiO2 aerogel monoliths photocatalyst synthesized using sol–gel method provided insight into the characteristics that make a photocatalyst material well-suited for photodegradation of phenol and cyanide in an industrial waste stream containing Cl, S2− and NH4+. Interestingly, after multiple reuse cycles (i.e. ≥7), photodegradation systems with regenerated photocatalyst showed a slightly decreasing of photoactivity 2–4%. The overall kinetics of photodegradation of either phenol or cyanide using TiO2–SiO2 aerogel photocatalyst was found to be of first order.  相似文献   

14.
Nanodiamond comb-shaped lateral field emitter arrays in diode configuration were fabricated and characterized for high current field emission. Nitrogen-incorporated nanocrystalline diamond with grain size of 5–10 nm was micropatterned using RIE to realize interconnected arrays of comb structures equipped with uniformly spaced high aspect ratio lateral emitter fingers. A 9000-fingered nanodiamond lateral comb array diode with an inter-electrode spacing of 8 μm demonstrated a high emission current of  25 mA at an anode voltage of 260 V (electric field  32 V/μm) in 10− 7 Torr vacuum. The lateral emitter configuration shows potential for higher power with no emission current saturation observed. These vacuum micro/nanoelectronic devices comprised of nanodiamond lateral field emission diodes are attractive for low-voltage operating high current electron sources, high-power and high-speed switches, and other extreme demand/extreme environment electronics.  相似文献   

15.
Heating a gel consisting of briefly hydrolyzed tetraethyl orthosilicate (TEOS), 2–5-nm sized anatase, H2SO4, NaOH, KF, and H2O in the mole ratio of 5.5:1:2.2:8.4:1.43:350 at 200 °C for 7 h leads to production of ETS-10 crystals in fairly uniform size (500 nm) and shape having well-developed smooth facets in the truncated tetragonal bipyramidal structure. Characterization of the crystals revealed that the titanate quantum wires are well-preserved within the produced crystals. The required reaction period under our reaction condition (7 h) is much shorter than under the previously reported conditions which use Degussa P25 (a mixture of 25 nm sized anatase and rutile) as the Ti source (>42 h at 200 °C). The marked increase in crystallization rate and uniformity of size and shape is attributed to the use of very small anatase nanoparticles and briefly hydrolyzed tetraethyl orthosilicate (TEOS) as the Ti and Si sources, respectively. This report also demonstrates for the first time that TEOS can be used as the Si source.  相似文献   

16.
The present work investigates the formation of nanotubes by anodizing titanium at 20 V in glycerol containing either 0.175 M or 0.35 M NH4F. A photoresist-masking method of thin Ti films allows to use SEM cross-sections to directly obtain information on oxide morphology, layer thickness and metal substrate loss. Therefore not only features of the initial growth stages but also oxide expansion factors can accurately be determined. The expansion factors were found to be 2.4 for the initial formation of a barrier layer, 1.7–1.9 during pore initiation and 2.7–3.1 as the main nanotubes develop. These values (>2.6) suggest substantial contribution to steady state tube growth by a plastic oxide flow mechanism. Combined with RBS efficiency measurements the method presented here allows facile and direct investigation of the mechanism of pore/tube formation.  相似文献   

17.
To obtain a novel, active and selective to diesel catalytic material for syngas processing via Fischer–Tropsch synthesis (FTS), a series of 20 wt.% cobalt catalysts has been prepared by impregnation of a mesoporous molecular sieve based on silica (SBA-15, Al-MCM-41, INT-MM1), and a commercial amorphous silica for comparison purposes. All materials were characterized by several physico-chemical techniques: AAS, BET surface area, XRD, TPR, and H2 chemisorption with pulse reoxidation and finally their reactivity on the FTS reaction was evaluated at 523 K, 10 bar, and H2/CO = 2. Catalytic and characterization results show a great influence of mesoporous support porosity on the structure, reducibility, and FTS catalytic behavior of cobalt oxide species supported over these ordered materials. It was found that the size of supported cobalt oxide species formed during the calcination step increased with the average pore size (Dp) of the mesoporous support. Thus, the catalyst with larger Co oxide species located in wide pore silica showed to be easily reducible, more active and very selective toward the diesel fraction. It seems to be the case of the Co/SBA-15 solid, which showed to be the most active solid (XCO 63%) when the same mass of catalyst was used. Under CO iso-conversion conditions (XCO 40%), Co/SBA-15 was more selective toward the formation of C5+ hydrocarbons (80%, α = 0.76) and less selective to CH4 (15%). On the contrary, when Al-MCM-41 and INT-MM1 were used as supports, a lower selectivity to C5+ and CO conversion and higher CH4 selectivity (20%) were observed due to the decrease of Dp, of the cobalt oxide species size and the reducibility degree of such species.  相似文献   

18.
“Coral”-type microstructure carbon films, with and without N2 incorporation, were grown on sharpened tungsten microprobes by plasma enhanced chemical vapor deposition (PECVD) using H2/CH4/N2 and H2/CH4 gas mixtures, respectively. The electrochemical behaviors of the coral-type carbon coated tungsten microprobe, characterized by various concentrations of ferrocyanide in a background of 0.1 M KCl, show excellent structural stability with similar microstructure before and after prolonged analysis without the need of surface pretreatment. The microprobes exhibit quasi-reversible kinetics with high signal-to-noise S/B ratio. The N2 incorporated microprobe shows a slightly wider potential window, no surface adsorption of the analyte and higher sensitivity as compared to the sample without nitrogen incorporation. Furthermore, the wide potential window of  3 V is very good as compared to boron-doped diamond electrodes which are  3.5 V. This well behaved; broad electrochemical behavior and the simple fabrication method make the “coral” carbon film microprobe an excellent candidate for electrochemical sensing.  相似文献   

19.
The role of the particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel synthesized by combustion method has been determined. Samples with different particle size were obtained by heating the raw spinel from 700 to 1100 °C, for 1 h in air. X-ray diffraction patterns revealed that all the prepared materials are single-phase spinels. The main effect of the thermal treatment is the remarkable increase of the particles size from 60 to 3000 nm as determined by transmission electron microscopy. The electrochemical properties were determined at high discharge currents (1C rate) in two-electrode Li-cells. At 25 and at 55 °C, in spite of the great differences in particle size, the discharge capacity drained by all samples is similar (Qdch ≈ 135 mAh g−1). Instead, the cycling performances strongly change with the particle size. The spinels with Φ > 500 nm show better cycling stability at 25 and at 55 °C than those with Φ < 500 nm. The samples heated at 1000 and 1100 °C, with high potential (E ≈ 4.7 V), elevate capacity (Q ≈ 135 mAh g−1), and remarkable cycling performances (capacity retention after 250 cycles >96%) are very attractive materials as 5V-cathodes for high-energy Li-ion batteries.  相似文献   

20.
Adsorption and reaction of water on the clean and oxygen modified Ir(1 1 1) single crystal surfaces have been studied using temperature programmed desorption (TPD) and molecular beam reactive scattering (MBRS) techniques under ultrahigh vacuum (UHV) conditions. Water dissociates on the clean Ir(1 1 1) surface with a probability (estimated based on production of hydrogen) which decreases from 0.016 to 0.004 ± 0.0015 with increasing water coverages from 0.34 to 2.59 monolayer. Scattering experiments performed at various surface temperatures in the limit of zero coverage yield water dissociation probabilities in the range of 0.0005–0.012 (300–900 K) with an uncertainty expressed as ±20% of the dissociation probability. The apparent activation energy for water dissociation on clean Ir(1 1 1) is estimated to be 170 ± 5 kJ/mol employing MBRS techniques, which probably cannot be applied to TPD measurements with higher water coverages. We speculate that water dissociation occurs on the defects of the Ir(1 1 1) surface. Using isotopically labeled reactants, a strong interaction between adsorbed water and oxygen was found on Ir(1 1 1), indicated by a new water desorption feature at 235 K and scrambled oxygen and water desorption products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号