首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between the notions of robust stability and quadratic stability for uncertain systems with structured uncertainty due to both real and complex parameter variations is discussed. Examples are presented to demonstrate that for systems containing at least two uncertain blocks, the notions of robust stability for complex parameter variations and quadratic stability for real parameter variations are not equivalent. A byproduct of these examples is that, for this class of systems, quadratic stability for real perturbations need not imply quadratic stability for complex perturbations. This is in stark contrast with the situation in the case of unstructured uncertainty, for which it is known that quadratic stability for either real or complex perturbations is equivalent to robust stability for complex perturbations, and thus equivalent to a small gain condition on the transfer matrix that the perturbation experiences  相似文献   

2.
具有状态和测量时滞不确定系统的鲁棒H∞状态估计   总被引:1,自引:0,他引:1       下载免费PDF全文
考虑一类已知状态和测量时滞且范数有界参数不确定连续时间系统的鲁棒H∞状态估计问题.这个问题解的充分条件由二个代数Riccati不等式给出,它可以保证存在一个渐近稳定状态估计器使得对于所有不确定性从外界干扰到输出估计误差的传递函数满足指定的H∞指标.以上这些结果可以推广到一类未知状态和测量时滞且范数有界参数不确定连续系统的鲁棒H∞状态估计问题,对于已知状态和测量时滞系统,所得状态估计器与参数不确定性无关,而与时滞有关.对于未知状态和测量时滞系统,其状态估计器不仅与参数不确定性无关,而且与时滞也无关.  相似文献   

3.
This paper considers the robust stability of a linear time-invariant state space model subject to real parameter perturbations. The problem is to find the distance of a given stable matrix from the set of unstable matrices. A new method, based on the properties of the Kronecker sum and two other composite matrices, is developed to study this problem; this new method makes it possible to distinguish real perturbations from complex ones. Although a procedure to find the exact value of the distance is still not available, some explicit lower bounds on the distance are obtained. The bounds are applicable only for the case of real plant perturbations, and are easy to compute numerically; if the matrix is large in size, an iterative procedure is given to compute the bounds. Various examples including a 46th-order spacecraft system are given to illustrate the results obtained. The examples show that the new bounds obtained can have an arbitrary degree of improvement over previously reported ones. This work has been supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. A4396.  相似文献   

4.
The authors develop results on the robust stability of a nonlinear control system containing both parametric as well as unstructured uncertainty. The basic system considered is that of the classical Lur'e problem of nonlinear control theory. A robust version of the Lur'e problem consisting of a family of linear time-invariant systems subjected simultaneously to bounded parameter variations and feedback perturbations from a family of sector-bounded nonlinear gains is presently treated. By using the Kharitonov theorem to develop some extremal results on positive realness of interval transfer functions (i.e. a family of rational transfer functions with bounded independent coefficient perturbations), the authors determine the size of a sector of nonlinear feedback gains for which absolute stability can be guaranteed. These calculations amount to the determination of the stability margin of the system under joint parametric and nonlinear feedback perturbations  相似文献   

5.
This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example.  相似文献   

6.
本文研究了具有无穷时滞切换不确定细胞神经网络(UCNNs)系统任意切换下的指数稳定性.利用同胚映射和M-矩阵理论,得到UCNNs系统平衡点存在性,唯一性和指数稳定性的充分条件;利用Lyapunov泛函方法,研究了时滞切换UCNNs系统任意切换下的鲁棒指数稳定性,并得到确保系统全局指数稳定的充分条件.  相似文献   

7.
8.
This article deals with the global robust stabilisation for a class of switched nonlinear systems under arbitrary switchings. The system under consideration is in lower triangular form and contains uncertainty. Both common Lyapunov function and state feedback controller are simultaneously constructed by backstepping such that the closed-loop system is globally robustly asymptotically stable under arbitrary switchings. Lastly, the design method proposed is extended to the uncertain switched nonlinear systems in nested lower triangular form to solve the global robust stabilisation problem under arbitrary switchings. Two examples are given to show the effectiveness of the proposed methods.  相似文献   

9.
This study deals with the problem of robust adaptive fault‐tolerant tracking for uncertain systems with multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults including loss of effectiveness, outage, and stuck. It is assumed that the upper bounds of the delayed state perturbations, the external disturbances and the unparameterizable time‐varying stuck faults are unknown. Then, by estimating online such unknown bounds and on the basis of the updated values of these unknown bounds from the adaptive mechanism, a class of memoryless state feedback fault‐tolerant controller with switching signal function is constructed for robust tracking of dynamical signals. Furthermore, by making use of the proposed adaptive robust tracking controller, the tracking error can be guaranteed to be asymptotically zero in spite of multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults. In addition, it is also proved that the solutions with tracking error of resulting adaptive closed‐loop system are uniformly bounded. Finally, a simulation example for B747‐100/200 aircraft system is provided to illustrate the efficiency of the proposed fault‐tolerant design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
郭鑫  任海鹏 《自动化学报》2015,41(3):601-610
分析了三相脉冲宽度调制(Pulse width modulation, PWM)功率因数校正(Power factor correction, PFC)变换器的工作原理和数学模型. 针对现有控制方法在参数不确定及参数变化时性能变差的问题, 提出采用鲁棒变结构控制减小系统参数不确定性的影响, 同时采用渐缩滑动边界的方法减小了控制量的颤振. 仿真及实验结果表明, 与传统PI控制和反馈线性化方法相比, 本文方法不仅在标称参数时具有较好的动静态性能, 而且在系统参数发生变化时, 具有更强的鲁棒性.  相似文献   

11.
This paper studies the problem of robust control design for a class of interconnected uncertain systems under sampled measurements. The class of system under consideration is described by a state space model containing unknown cone bounded nonlinear interaction and time-varying norm-bounded parameter uncertainties in both state and output equations. Our attention is focused on the design of linear dynamic output feedback controllers using sampled measurements. We address the problem of robust H control in which both robust stability and a prescribed H performance are required to be achieved irrespective of the uncertainties and nonlinearities. The H performance measure involves both continuous-time and discrete-time signals. It has been shown that the above problems can be recast into H syntheses for related N decoupled linear sampled-data systems without parameter uncertainties and unknown nonlinearities, which can be solved in terms of Riccati differential equations with finite discrete jumps. A numerical example is given to show the potential of the proposed technique.  相似文献   

12.
研究一类可以用(max,min,+)等代数运算描述的具有约束的赋时Petri网的性能鲁棒性.首先给出了此类Petri网的统一的代数描述,并将性能鲁棒性问题形式化.接着给出了参数区间摄动情形下性能保持鲁棒性的一个充分条件.对于仅包含(min,+)和(min,max)运算的特殊情形,得到了参数区间摄动情形下性能保持鲁棒性的充分必要条件.  相似文献   

13.
We solve the problem of robust stabilization with respect to right-coprime factor perturbations for irrational discrete-time transfer functions. The key condition is that the associated dynamical system and its dual should satisfy a finite-cost condition so that two optimal cost operators exist. We obtain explicit state space formulas for a robustly stabilizing controller in terms of these optimal cost operators and the generating operators of the realization. Along the way we also obtain state space formulas for Bezout factors.  相似文献   

14.
研究一类非线性参数扰动满足范数有界条件的多重时滞系统,利用Lyapunov函数方法,获得了一个新的鲁棒稳定性充分条件,并应用变结构控制实现了该类非线性参数扰动多重时滞系统的鲁棒镇定。  相似文献   

15.
This paper addresses the robust H static output feedback (SOF) controller design problem for a class of uncertain fuzzy affine systems that are robust against both the plant parameter perturbations and controller gain variations. More specifically, the purpose is to synthesize a non-fragile piecewise affine SOF controller guaranteeing the stability of the resulting closed-loop fuzzy affine dynamic system with certainH performance index. Based on piecewise quadratic Lyapunov functions and applying some convexification procedures, two different approaches are proposed to solve the robust and non-fragile piecewise affine SOF controller synthesis problem. It is shown that the piecewise affine controller gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, simulation examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

16.
本文针对一类具有多时滞状态扰动的非线性系统,讨论了其自适应鲁棒镇定问题。在本文中,多时滞状态扰动的上界未知,通过设计自适应律估计上界的值。基于Lyapumov-Krasovskii函数设计了鲁棒控制器,使闭环系统的鲁棒镇定问题可解。一个数值例子的仿真验证了结论的正确性。  相似文献   

17.
We study time-scale separation and robust controller design for a class of singularly perturbed nonlinear systems under perfect state measurements. The system dynamics are taken to be jointly linear in the fast state variables, control and disturbance inputs, but nonlinear in the slow state variables. Since global timescale separation may not always be possible for nonlinear singularly perturbed systems, we restrict our attention here to some closed subset of the state space, on which a timescale separation holds for sufficiently small values of the singular perturbation parameter. We construct a slow controller and a composite controller based on the solutions of particular slow and fast games obtained using time-scale separation. For the class of systems for which the slow controller can be selected to be robust with respect to small regular structural perturbations on the slow subsystem, we show under some growth conditions that the composite controller can achieve any desired level of performance that is larger than the maximum of the performance levels for the slow and fast subsystems,. A slow controller, however, is not generally as robust as the composite controller; but, still under some conditions which are delineated in the paper, the fast dynamics can be totally ignored. The paper also presents a numerical example to illustrate the theoretical results.  相似文献   

18.
This paper investigates the problem of robust fault‐tolerant control for a class of uncertain switched nonlinear systems in lower triangular form. A system of this class involves parameter uncertainties and unknown nonlinear disturbances. A sufficient condition for the problem to be solvable under arbitrary switching is given in terms of linear matrix inequalities (LMIs). State feedback controllers of subsystems are designed by using the solutions to the matrix inequalities to guarantee global asymptotic stability of the closed‐loop systems in presence of actuator failures and under arbitrary switching. A practical system of hybrid haptic display is analyzed to demonstrate the proposed design method.  相似文献   

19.
20.
The problem of robust stability for linear time-invariant single-output control systems subject to both structured (parametric) and unstructured (H) perturbations is studied. A generalization of the small gain theorem which yields necessary and sufficient conditions for robust stability of a linear time-invariant dynamic system under perturbations of mixed type is presented. The solution involves calculating the H-norm of a finite number of extremal plants. The problem of calculating the exact structured and unstructured stability margins is then constructively solved. A feedback control system containing a linear time-invariant plant which is subject to both structured and unstructured perturbations is considered. The case where the system to be controlled is interval is treated, and a nonconservative, easily verifiable necessary and sufficient condition for robust stability is given. The solution is based on the extremal of a finite number of line segments in the plant parameter property of a finite number of line segments in the plant parameter space along which the points closest to instability are encountered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号