共查询到20条相似文献,搜索用时 12 毫秒
1.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately. 相似文献
2.
Rasim Behçet 《Fuel Processing Technology》2011,92(6):1187-1194
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines. 相似文献
3.
The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions 总被引:1,自引:0,他引:1
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends. 相似文献
4.
Thomas W. Woolerton 《Electrochimica acta》2009,54(22):5011-10397
Hydrogenase enzymes that allow micro-organisms to gain energy from oxidation of H2 undergo efficient electrocatalysis of H2 oxidation or production when adsorbed on a graphite rotating disk electrode [K.A. Vincent, A. Parkin, F.A. Armstrong, Chem. Rev. 107 (2007) 4366]. Combining potential sweeps or steps with precisely controlled gas exchanges is enabling us to build up a detailed understanding of the many factors that control the chemistry of nickel-iron membrane-bound hydrogenase (MBH) enzymes. The observation that the MBH enzymes from Ralstonia strains have extremely high affinity for H2 and continue oxidising H2 in the presence of O2 and CO has relevance for selective fuel cell catalysis [K.A. Vincent, J.A. Cracknell, J.R. Clark, M. Ludwig, O. Lenz, B. Friedrich, F.A. Armstrong, Chem. Commun. (2006) 5033; K.A. Vincent, J.A. Cracknell, O. Lenz, I. Zebger, B. Friedrich, F.A. Armstrong, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 16951], and this has led us to compare the ability of hydrogenases and platinum to oxidise low levels of H2 and mixtures of H2 and O2. We show that Pt is a poor catalyst for oxidation of sub-atmospheric levels of H2 compared to the MBH from Ralstonia eutropha H16, and that at a platinised electrode, H2 oxidation competes less favourably with reduction of O2 compared to the situation at hydrogenase-modified graphite. This should have implications for development of future selective energy catalysts able to concentrate the energy available from dilute H2. 相似文献
5.
Gang Li Jennifer Edwards Albert F. Carley Graham J. Hutchings 《Catalysis Today》2007,122(3-4):361-364
The direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts is described using two zeolites, ZSM-5 and zeolite Y, using an impregnation method of preparation. The addition of Pd to Au for these catalysts significantly enhances the productivity for hydrogen peroxide. The use of zeolites as a support for Au-Pd gives higher rates of hydrogen peroxide formation when compared with alumina-supported Au catalysts prepared using a similar method. The addition of metals other than Pd is also investigated, but generally Au-Pd catalysts give the highest activity for the synthesis of hydrogen peroxide. The addition of Ru and Rh have no significant effect, but the addition of Pt does enhance the activity for the selective formation of hydrogen peroxide. 相似文献
6.
The direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au catalysts is described and their activity is contrasted with silica- and alumina-supported Au catalysts. Two zeolites were investigated, ZSM-5 and zeolite Y. The effect of calcination of these catalysts is studied and it is found that for uncalcined catalysts high rates of hydrogen peroxide formation are observed, but these catalysts are unstable and lose Au during use. Consequently, reuse of these catalysts leads to lower rates of hydrogen peroxide formation. However, catalysts calcined at 400 °C are more stable and can be reused without loss of gold. The use of zeolites as a support for Au gives comparable rates of hydrogen peroxide formation to alumina-supported Au catalysts and higher rates when compared with silica-supported catalysts. prepared using a similar method. Zeolite Y-supported catalysts are more active than ZSM-5-supported catalysts for the stable calcined materials. It is considered that the overall activity of these supported catalysts may be related to the aluminium content as the activity increases with increasing aluminium content. 相似文献
7.
Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics 总被引:4,自引:0,他引:4
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel. 相似文献
8.
S. Abate G. Centi S. Melada S. Perathoner F. Pinna G. Strukul 《Catalysis Today》2005,104(2-4):323-328
A series of new tubular catalytic membranes (TCM's) have been prepared and tested in the direct synthesis of H2O2. Such TCM's are asymmetric -alumina mesoporous membranes supported on macroporous -alumina, either with a subsequent carbon coating (CAM) or without (AAM). Pd was introduced by two different impregnation techniques. Deposition–precipitation (DP) was applied to CAM's to obtain an even Pd particles distribution inside the membrane pore network, whereas electroless plating deposition (EPD) was successfully applied to AAM's to give a 1–10 μm thick nearly-dense Pd layer. Both type of membranes were active in the direct synthesis of H2O2. Catalytic tests were carried out in a semi-batch re-circulating reactor under very mild conditions. Concentrations as high as 250–300 ppm H2O2 were commonly achieved with both CAM's and AAM's after 6–7 h time on stream, whereas the decomposition rate was particularly high in the presence of H2. Important features are the temperature control and pre-activation. In order to slow down the decomposition and favor the synthesis of H2O2 a smooth metal surface is needed. 相似文献
9.
S. Salomons M. Votsmeier R.E. Hayes A. Drochner H. Vogel J. Gieshof 《Catalysis Today》2006,117(4):491-497
This paper presents experimental and modelling results for the oxidation of mixtures of hydrogen and carbon monoxide in a lean atmosphere. Transient light-off experiments over a platinum catalyst (80 g/ft3 loading) supported on a washcoated ceramic monolith were performed with a slow inlet temperature ramp. Results for CO alone agree with earlier results that predict self-inhibition of CO; that is an increasing light-off temperature with increasing CO concentration. Addition of hydrogen to the feed causes a reduction in light-off temperature for all concentrations of CO studied. The most significant shift in light-off temperature occurs with the addition of small amounts of hydrogen (500 ppm, v/v) with only minor marginal enhancement occurring at higher hydrogen concentrations. Hydrogen alone in a lean atmosphere will oxidise at room temperature. In mixtures of hydrogen and CO, the CO was observed to react first until a conversion of about 50% was observed, at which point the conversion of hydrogen rapidly went from 0 to 100%.
Simulations performed using literature mechanistic models for the oxidation of these mixtures predicted that hydrogen ignites first, followed by CO, a direct contradiction of the experimental evidence. Upon changing the activation energy between adsorbed hydrogen and oxygen, the CO was observed to oxidise first, however, no enhancement of light-off was predicted. The effect cannot be explained by the mechanistic model currently under discussion. 相似文献
10.
Ichiro Yamanaka Toshikazu Hashimoto Ryo Ichihashi Kiyoshi Otsuka 《Electrochimica acta》2008,53(14):4824-4832
Direct synthesis of H2O2 acid solutions was studied using a gas-diffusion cathode prepared from activated carbon (AC), vapor-growing-carbon-fiber (VGCF) and poly-tetra-fluoro-ethylene (PTFE) powders, with a new H2/O2 fuel cell reactor. O2 reduction to H2O2 was remarkably enhanced at the three-phase boundary (O2(g)-electrode(s)-acid(l)) at the [AC + VGCF] cathode. Fast diffusion processes of O2 to the active surface and of H2O2 to the bulk acid solutions were essential for H2O2 accumulation. Synergy of AC and VGCF was observed for the H2O2 formation. RRDE and cyclic voltammetry studies indicated that the surface of AC functioned as the active phase for O2 reduction to HO2, and VGCF functioned as an electron conductor and a promoter to convert HO2 to H2O2. A maximum H2O2 concentration of 353 mM (1.2 wt%) was accomplished under short-circuit conditions (current density 12.7 mA cm−2, current efficiency 40.1%, geometric area of cathode 1.3 cm2, reaction time 6 h). 相似文献
11.
As global petroleum demand continues to increase, alternative fuel vehicles are becoming the focus of increasing attention. Biodiesel has emerged as an attractive alternative fuel option due to its domestic availability from renewable sources, its relative physical and chemical similarities to conventional diesel fuel, and its miscibility with conventional diesel. Biodiesel combustion in modern diesel engines does, however, generally result in higher fuel consumption and nitrogen oxide (NOx) emissions compared to diesel combustion due to fuel property differences including calorific value and oxygen content. The purpose of this study is to determine the optimal engine decision-making for 100% soy-based biodiesel to accommodate fuel property differences via modulation of air-fuel ratio (AFR), exhaust gas recirculation (EGR) fraction, fuel rail pressure, and start of main fuel injection pulse at over 150 different random combinations, each at four very different operating locations. Applying the nominal diesel settings to biodiesel combustion resulted in increases in NOx at three of the four locations (up to 44%) and fuel consumption (11-20%) over the nominal diesel levels accompanied by substantial reductions in particulate matter (over 80%). The biodiesel optimal settings were defined as the parameter settings that produced comparable or lower NOx, particulate matter (PM), and peak rate of change of in-cylinder pressure (peak dP/dt, a metric for noise) with respect to nominal diesel levels, while minimizing brake specific fuel consumption (BSFC). At most of the operating locations, the optimal engine decision-making was clearly shifted to lower AFRs and higher EGR fractions in order to reduce the observed increases in NOx at the nominal settings, and to more advanced timings in order to mitigate the observed increases in fuel consumption at the nominal settings. These optimal parameter combinations for biodiesel were able to reduce NOx and noise levels below nominal diesel levels while largely maintaining the substantial PM reductions. These parameter combinations, however, had little (maximum 4% reduction) or no net impact on reducing the biodiesel fuel consumption penalty. 相似文献
12.
In this research work, aluminium oxide/yttria stabilized zirconia (20%Al2O3/80%8YSZ) and ceria/yttria stabilized zirconia (20%CeO2/80%8YSZ) were coated through atmospheric plasma spray technique (APS) as thermal barrier coating (TBC) over CoNiCrAlY bond coat on aluminium alloy (Al-13%Si) substrate piston crown material and their thermal cycling behavior were studied experimentally. Thermal cycle test of both samples were conducted at 800?°C. Microstructural, phase and elemental analysis of the TBC coatings were experimentally investigated. The performance, combustion and emission characteristics of Al2O3/8YSZ, CeO2/8YSZ TBC coated and uncoated standard diesel engine were experimentally investigated. The test results revealed that CeO2/8YSZ based TBC has an excellent thermal cycling behavior in comparison to the Al2O3/8YSZ based TBC. The spallation of the Al2O3/8YSZ TBC occurred mainly due to the formation of thermally grown oxide (TGO), and growth of residual stresses at top coating and bond coating interface. The experimental results also revealed that the increase of brake thermal efficiency and reduction of specific fuel consumption for both TBC coated engine. Further reduction of HC, CO and smoke and increase of NOx emission were recorded for both TBC coated engine compared to the standard diesel engine. 相似文献
13.
To study the effects of fuel sulfur content on the characteristics of diesel particle emitted from a typical engine used in China, two types of diesel fuel with sulfur content of 30 ppm and 500 ppm were used in this engine dynamometer test under six operation conditions corresponding to 20%, 50% and 80% load at 1400 rpm and 2300 rpm engine speeds, respectively. Gaseous pollutants and particulate matter (PM) emissions were sampled with AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp), respectively. More specifically, the PM mass, total carbon (TC), organic carbon (OC), elemental carbon (EC) and water-soluble ion distribution were also measured. Compared with high sulfur diesel, the application of low sulfur diesel can lower fuel-based PM emissions by 9.2-56.6%. At 1400 rpm, the low sulfur diesel decreased both OC and EC by 5-34% and about 20%; while at 2300 rpm, the low sulfur fuel decreased OC by 33-57% and increased EC emission, resulting in a lower OC/EC ratio. The evidence implicating that OC oxidation was promoted by low sulfur diesel, but the effect on EC oxidation was dependent on engine speed. The linear regression has been conducted between TC and PM10, and the slopes were 0.88 and 0.80 for low sulfur diesel and high sulfur one, respectively. Higher sulfate content was detected in the 0.13 μm particles when using the high sulfur diesel, but the percentage of sulfate was 0.9% for PM10 from both diesel fuels. Comparing with that of 500 ppm, EC increased sharply to a maximum of 114% in particles of 0.13 μm when using 30 ppm sulfur diesel at 2300 rpm. 相似文献
14.
Jennifer K. Edwards Adrian Thomas Benjamin E. Solsona Philip Landon Albert F. Carley Graham J. Hutchings 《Catalysis Today》2007,122(3-4):397-402
The direct synthesis of hydrogen peroxide from H2 and O2 using a range of supported Au–Pd alloy catalysts is compared for different supports using conditions previously identified as being optimal for hydrogen peroxide synthesis, i.e. low temperature (2 °C) using a water–methanol solvent mixture and short reaction time. Five supports are compared and contrasted, namely Al2O3, -Fe2O3, TiO2, SiO2 and carbon. For all catalysts the addition of Pd to the Au only catalyst increases the rate of hydrogen peroxide synthesis as well as the concentration of hydrogen peroxide formed. Of the materials evaluated, the carbon-supported Au–Pd alloy catalysts give the highest reactivity. The results show that the support can have an important influence on the synthesis of hydrogen peroxide from the direct reaction. The effect of the methanol–water solvent is studied in detail for the 2.5 wt% Au–2.5 wt% Pd/TiO2 catalyst and the ratio of methanol to water is found to have a major effect on the rate of hydrogen peroxide synthesis. The optimum mixture for this solvent system is 80 vol.% methanol with 20 vol.% water. However, the use of water alone is still effective albeit at a decreased rate. The effect of catalyst mass was therefore also investigated for the water and water–methanol solvents and the observed effect on the hydrogen peroxide productivity using water as a solvent is not considered to be due to mass transfer limitations. These results are of importance with respect to the industrial application of these Au–Pd catalysts. 相似文献
15.
Environmental degradation and depleting oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on oil import of about 125 Mt per annum (7:1 diesel/gasoline). Diesel being the main transport fuel in India, finding a suitable alternative to diesel is an urgent need. In this context, waste plastic solid is currently receiving renewed interest. Waste plastic oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. The present investigation was to study the effect of cooled exhaust gas recirculation (EGR) on four stroke, single cylinder, direct injection (DI) diesel engine using 100% waste plastic oil. Experimental results showed higher oxides of nitrogen emissions when fueled with waste plastic oil without EGR. NOx emissions were reduced when the engine was operated with cooled EGR. The EGR level was optimized as 20% based on significant reduction in NOx emissions, minimum possible smoke, CO, HC emissions and comparable brake thermal efficiency. Smoke emissions of waste plastic oil were higher at all loads. Combustion parameters were found to be comparable with and without EGR. Compression ignition engines run on waste plastic oil are found to emit higher oxides of nitrogen. 相似文献
16.
The effect of additives on Pt-ZSM-5 catalysts was studied for the selective NO reduction by H2 in the presence of excess O2 (NO–H2–O2 reaction) at 100 °C. The reaction of NO in a stream of 0.08% NO, 0.28% H2, 10% O2, and He balance yielded N2 with less than 10% selectivity, which could not be increased by changing Pt loading or H2 concentration in the gas feed. Co-impregnation of NaHCO3 and Pt onto ZSM-5 decreased the BET surface area and the Pt dispersion. Nevertheless, the Na-loaded catalyst (Na-Pt-ZSM-5) exhibited the higher NOx conversion (>90%) and the N2 selectivity (ca. 50%). Such a high catalytic activity even at high Na loadings (≥10 wt.%) is completely contrast to other Na-added Pt catalyst systems reported so far. Further improvement of N2 selectivity was attained by the post-impregnation of NaHCO3 onto Pt-ZSM-5. In situ DRIFT measurements suggested that the addition of Na promotes the adsorption of NO as NO2−-type species, which would play a role of an intermediate to yield N2. The introduction of Lewis base to the acidic supports including ZSM-5 would be applied to the catalyst design for selective NO–H2–O2 reaction at low temperatures. 相似文献
17.
G. Fornasari F. Trifir A. Vaccari F. Prinetto G. Ghiotti G. Centi 《Catalysis Today》2002,75(1-4):421-429
A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg–Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NOx storage-reduction (NOxSR) catalysts show improved performances in NOx storage than Pt,Ba/alumina NOxSR catalysts at reaction temperatures lower than 200 °C. These catalysts show also improved resistance to deactivation by SO2. The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NOx storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NOx. The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300 °C. On these catalysts FT-IR characterization evidences the formation of a Pt–Cu alloy after reduction. 相似文献
18.
A. Bueno-Lpez K. Krishna B. van der Linden G. Mul J.A. Moulijn M. Makkee 《Catalysis Today》2007,121(3-4):237-245
Pt supported on CeO2 and 10 wt.% La3+-doped CeO2 catalysts have been prepared, characterised and tested for soot oxidation by O2 in TGA. The reaction mechanism has been studied in a TAP reactor with labelled O2. Isotopic oxygen exchange between molecular O2 and ‘O’ on the support/catalyst was observed and soot oxidation is being carried out by lattice oxygen. TAP studies further show that Pt improves O2 adsorption and, therefore, 5 wt.% Pt-containing catalysts are more active for soot oxidation than the counterpart supports. In addition, CeO2 doping by La3+ leads to an improved support, since La3+ stabilises the structure of CeO2 when calcined at high temperature (1000 °C) and minimises sintering. In addition, La3+ improves the Ce4+/Ce3+ reduction as deduced from H2-TPR experiments and favours oxygen mobility into the lattice. A synergetic effect of Pt and La3+ is observed, Pt-containing La3+-doped CeO2 being the most active catalyst for soot oxidation by O2 among the samples studied. 相似文献
19.
R.M. Navarro M.C. Alvarez-Galvan J.A. Villoria I.D. Gonzlez-Jimnez F. Rosa J.L.G. Fierro 《Applied catalysis. B, Environmental》2007,73(3-4):247-258
The oxidative reforming of diesel over Co/La2O3 and Ru–Co/La2O3 catalysts derived from LaCoO3 perovskite precursors was studied. Physicochemical characterization by XPS, TPR and XRD revealed that the incorporation of Ru to LaCoO3 produces changes in LaCoO3 evidenced by a smaller size of the LaCoO3 particles and cobalt segregation on the LaCoO3 surface. The modifications in the structure of LaCoO3 induced by the addition of Ru directly affect the dispersion and morphology of Co particles developed under the reaction. The active phases derived from pretreatment of perovskites evolve differently with time on stream, being observed that the presence of a greater proportion of perovskite phase in the Ru/LaCoO3 sample produces an increase in catalyst stability. TPD-MS analysis also indicates that bulk oxygen release from the Ru–Co/La2O3 sample could improve its catalytic behaviour. The characterization of used samples reveals that improvements in the cobalt surface concentration and Co–La2O3 interactions contribute to the better catalytic stability of the Ru–Co/La2O3-derived catalyst. 相似文献
20.
Experimental study has been carried out to investigate performance parameters, emissions, cylinder pressure, exhaust gas temperature (Texhaust) and engine wall temperatures (Twall) for direct injection diesel engine. Tests were conducted for sunflower oil (S100) and 20% jojoba oil + 80% pure diesel fuel (B20) in comparison to pure diesel fuel with different engine speeds. S100 and B20 were selected for the study because of its being widely used in Egypt and in the world. Also, series of tests are conducted at same previous conditions with different percentage of exhaust gas recirculation (EGR) from 0% to 12% of inlet mass of air fresh charge. Results indicate that S100 or B20 gives lower brake thermal efficiency (ηB), brake power (BP), brake mean effective pressure (BMEP), and higher brake specific fuel consumption (BSFC) due to lower heating value compared to pure diesel fuel. S100 or B20 gives lower NOX concentration due to lower gas temperature. S100 or B20 gives higher Twall and Texhaust due to incomplete combustion inside engine cylinder. S100 or B20 gives higher CO and CO2 concentrations due to higher carbon/hydrogen ratio. The position of maximum pressure (Pmax) change for pure diesel fuel is earlier than for S100 or B20. The results show that S100 or B20 are promising as alternative fuel for diesel engine. The utilization of vegetable oils does not require a significant modification of existing engines. This can be seen as the main advantage of vegetable oils. The main disadvantages of biodiesel fuels are high viscosity, drying with time, thickening in cold conditions, flow and atomization characteristics. 相似文献