共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmano Souza Valente Vanya Márcia Duarte Pasa Carlos Rodrigues Pereira Belchior José Ricardo Sodré 《Fuel》2011,90(4):1700-1702
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained. 相似文献
2.
Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent 总被引:3,自引:0,他引:3
Weiliang Cao 《Fuel》2005,84(4):347-351
Transesterification of soybean oil in supercritical methanol has been carried out in the absence of catalyst. A co-solvent was added to the reaction mixture in order to decrease the operating temperature, pressure and molar ratio of alcohol to vegetable oil. With propane as co-solvent in the reaction system, there was a significant decrease in the severity of the conditions required for supercritical reaction, which makes the production of biodiesel using supercritical methanol viable as an industrial process. A high yield of methyl esters (biodiesel) was observed and the production process is environmentally friendly. Furthermore the co-solvent can be reused after suitable pretreatment. 相似文献
3.
甲醇钠催化地沟油制备生物柴油研究 总被引:2,自引:0,他引:2
以浓硫酸为催化剂,高酸值地沟油与甲醇酯化反应降酸的最优工艺条件为:n(甲醇):n(地沟油)=9:1,m(浓硫酸):m(地沟油)=1.1%,反应温度60℃,反应时间5h.制备生物柴油的最优工艺条件为:以甲醇钠为催化剂,反应时间2h,反应温度65℃,n(甲醇):n(地沟油)=7:1,m(甲醇钠):m(地沟油)=0.8%.制... 相似文献
4.
The use of surfactants and detergent fractionation to improve the cold flow properties of biodiesel from waste cooking oil (BWCO) was investigated. The effect of five types of surfactants, including sugar esters (S270 and S1570), silicone oil (TSA 750S), polyglycerol ester (LOP-120DP) and diesel conditioner (DDA) on the reduction of the cold filter plugging point (CFPP) of the BWCO, was evaluated, with the greatest reduction to the CFPP of the BWCO (from −10 °C to −16 °C) being was achieved by the addition of 0.02 wt% of polyglycerol ester (LOP-120P). Detergent fractionation of the BWCO was performed by first mixing partially crystallized biodiesel with a chilled detergent (sodium dodecylsulfate) solution accompanied by an electrolyte (magnesium sulfate), and then separating the mixture by centrifugation to obtain the BWCO liquid. An orthogonal experimental design was utilized to investigate the effects of the various parameters on detergent fractionation. The optimal parameters, as obtained by range analysis, were as follows: detergent loading 0.3 wt%, electrolyte loading 1.0 wt%, and water loading 150 wt%. The CFFP of the liquid biodiesel from waste cooking oil (LBWCO) was −17 °C with a yield of 73.1% when the detergent fractionation was performed under these conditions. A limited number of biodiesel physical and chemical properties were analyzed before and after the addition of surfactants and detergent fractionation. 相似文献
5.
Yong Wang Shun Ma Lili Wang Shuze Tang William W. Riley Martin J. T. Reaney 《European Journal of Lipid Science and Technology》2012,114(3):315-324
The free fatty acids (FFAs) of waste cooking oil (WCO) are readily esterified with crude glycerol in the presence of the solid superacid SO/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel production. The solid superacid SO/ZrO2–Al2O3 catalyzes both FFA esterification and TAG glycerolysis during the reaction. The conversion of FFA in the WCO with an acid value of 88.4 ± 0.5 mg KOH/g to acylglycerols was 98.4% under optimal conditions (mole ratio of glycerol to FFA = 1.4:1; reaction time = 4 h; reaction temperature = 200°C; catalyst loading = 0.3 wt%) obtained through an orthogonal experiment. The final FAME product with a FAME content of 96.9 ± 0.3 wt% yield was 94.8 wt%, after transesterification of the esterified WCO with methanol, catalyzed by potassium hydroxide. The FAME composition of the products produced by transesterification were identified and quantified by GC–MS. The results suggest that this new glycerol esterification process, using a solid superacid catalyst, affords a promising method to convert oils with high FFA levels, like WCO, to biodiesel. The process has the inherent advantage of easy separation steps for removing excess alcohol and significant savings in energy, when compared to acid catalyzed reactions with methanol to lower acidity. Practical applications : In this work, WCO with a high acid value was esterified with crude glycerol catalyzed by solid super acid, whose formula was expressed as SO/ZrO2–Al2O3. There are distinct advantages to this new esterification process, which include easy separation of the excess crude glycerol by sedimentation or centrifugation, the use of the low cost reactant crude glycerol direct from the byproducts of transesterification, the potential to achieve a very low content of FFAs by post‐refining to improve the yield of the final product, and time and energy saving are found as compared to the traditional methanol esterification process. This new technology provides a promising alternative method for processing feedstocks of high acid value, such as WCO, for the production of biodiesel. 相似文献
6.
Soojin Lee Dusko Posarac Naoko Ellis 《Chemical Engineering Research and Design》2011,89(12):2626-2642
Three continuous biodiesel processes with production capacity of 40,000 tonne/yr, including a conventional alkali-catalyzed process using both fresh and waste vegetable oil and a supercritical methanol process using waste vegetable oil as the raw material, were simulated in HYSYS. In order to improve the simulation accuracy, the properties of triolein, a model compound of vegetable oil, were re-evaluated. The normal boiling point of triolein was experimentally determined by thermogravimetric analysis and further incorporated in HYSYS simulation, which resulted in improvements in the values of specific heat capacity, mass density, and viscosity. Process economics were analyzed using Aspen In-Plant Cost Estimator. The alkali-catalyzed process using fresh vegetable oil had the lowest total capital investment, but the supercritical process was the most economically feasible overall, providing a lower manufacturing cost and higher net present value and a discounted cash flow rate of return. Sensitivity analyses of net present value were conducted using four parameters including oil feedstock costs, glycerol credit, biodiesel selling prices, and interest rates. Based on the analyses, prediction equations of net present value were developed. 相似文献
7.
Ana Rita RodriguesAlexandre Paiva Marco Gomes da SilvaPedro Simões Susana Barreiros 《The Journal of Supercritical Fluids》2011,56(3):259-264
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%. 相似文献
8.
Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating
Shaoyang Liu 《Fuel》2010,89(10):2735-2740
Efficient biodiesel conversion from waste cooking oil with high free fatty acids (FFAs) was achieved via a two-stage procedure (an acid-catalyzed esterification followed by an alkali-catalyzed transesterification) assisted by radio frequency (RF) heating. In the first stage, with only 8-min RF heating the acid number of the waste cooking oil was reduced from 68.2 to 1.64 mg KOH/g by reacting with 3.0% H2SO4 (w/w, based on oil) and 0.8:1 methanol (weight ratio to waste oil). Then, in the second stage, the esterification product (primarily consisting of triglycerides and fatty acid methyl esters) reacted with 0.91% NaOH (w/w, based on triglycerides) and 14.2:1 methanol (molar ratio to triglycerides) under RF heating for 5 min, and an overall conversion rate of 98.8 ± 0.1% was achieved. Response surface methodology was employed to evaluate the effects of RF heating time, H2SO4 dose and methanol/oil weight ratio on the acid-catalyzed esterification. A significant positive interaction between RF heating time and H2SO4 concentration on the esterification was observed. 相似文献
9.
Haris Mahmood Khan Chaudhry Haider Ali Tanveer Iqbal Saima Yasin Muhammad Sulaiman Hamayoun Mahmood Muhammad Raashid Mohsin Pasha Bozhong Mu 《中国化学工程学报》2019,27(10):2238-2250
Biodiesel utilization has been rapidly growing worldwide as the prime alternative to petrodiesel due to a global rise in diesel fuel demand along with hazardous emissions during its thermochemical conversion. Although, several debatable issues including feedstock availability and price, fuel and food competition, changes in land use and greenhouse gas emission have been raised by using edible as well as inedible feedstocks for the production of biodiesel. However, non-crop feedstocks could be a promising alternative. In this article, waste cooking oils have been recommended as a suitable option for biodiesel production bearing in mind the current national situation. The important factors such as the quantity of waste cooking oil produced, crude oil and vegetable oil import expenses, high-speed diesel imports, waste management issues and environmental hazards are considered. Moreover, process simulation and operating cost evaluation of an acid catalyzed biodiesel production unit are also conducted. The simulation results show that the production cost of waste cooking oil-based biodiesel is about 0.66USD·L-1. We believe that the present overview would open new pathways and ideas for the development of biofuels from waste to energy approach in Pakistan. 相似文献
10.
连续化条件下超临界甲醇法制备生物柴油 总被引:1,自引:0,他引:1
在连续操作的管式反应器中,以大豆油为原料在压力11~19MPa,温度240~400℃的超临界甲醇条件下进行连续化制备生物柴油的研究。考察了在连续反应条件下醇油摩尔比、压力、温度、停留时间及共溶剂对大豆油转化率的影响。实验结果表明:较高的醇油摩尔比有利于油脂转化率的提高,但当醇油摩尔比超过40:1后提高醇油摩尔比对提高油脂转化率的影响不大;在11~15MPa范围内,压力升高对油脂转化率影响很大,但高于15MPa后压力对转化率的影响减弱;反应温度对油脂转化率有着重要影响,在300℃以上随着温度的升高,油脂转化率有较大幅度的上升,但温度太高油脂会发生分解反应;醇油摩尔比40:1,温度350℃,压力15MPa,停留时间1000s是该实验获得的最佳反应条件,在该条件下油脂转化率可达89%。实验还研究了添加共溶剂四氢呋喃对油脂转化率的影响。 相似文献
11.
Rafael GuzattoTiago Luis de Martini Dimitrios Samios 《Fuel Processing Technology》2011,92(10):2083-2088
In this study, the Transesterification Double Step Process (TDSP) for the production of biodiesel from vegetable oil was modified to yield a shorter reaction time and products with improved quality. TDSP consists in a two step transesterification procedure which starts with a basic catalysis, followed by an acidic catalysis. The process modifications included a reduction in the concentration of catalysts, a reduction in the reaction time of the first step and the direct mixing of methanol/acid solution, without cooling the system between the first and second step. A comparison between washed and unwashed biodiesel demonstrates that the final washing and drying procedure is necessary for satisfactory results. The products were analyzed by 1H-NMR and nineteen different biodiesel analyses specific for international quality certification. The modified procedure resulted in a high conversion index (97% for waste cooking oil and soybean oil and 98% for linseed oil) and high yield (87 ± 5% for waste cooking oil, 92 ± 3% for soybean and 93 ± 3% for linseed oil). The biodiesel produced by the modified TDSP met ASTM, EN ISO and ABNT standards before the addition of stabilizer. 相似文献
12.
13.
Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process 总被引:8,自引:0,他引:8
For high-quality biodiesel fuel production from oils/fats, the catalyst-free two-step supercritical methanol process has been developed in a previous work, which consists of hydrolysis of triglycerides to fatty acids in subcritical water and subsequent methyl esterification of fatty acids to their methyl esters in supercritical methanol. In this paper, therefore, kinetics in hydrolysis and subsequent methyl esterification was studied to elucidate reaction mechanism. As a result, fatty acid was found to act as acid catalyst, and simple mathematical models were proposed in which regression curves can fit well with experimental results. Fatty acid was, thus, concluded to play an important role in the two-step supercritical methanol process. 相似文献
14.
Winterisation of waste cooking oil methyl ester to improve cold temperature fuel properties 总被引:1,自引:0,他引:1
Waste cooking oil methyl ester (WCOME) was winterised at 1, 0, −1 and −2°C following a 4×2 factorial design with one replication per cell. The process was carried out by filtration and both the filtrate (solid phase) and the liquid phase were analysed by gas chromatography (GC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cold filter plugging point (CFPP) and calorific values were measured.Temperatures of 0 and −1°C in conjunction with the quickest cooling rate (0.1°C min−1) and 15-24 h of cooling gave the most successful results in terms of fuel properties.Improvements in the low temperature properties of the winterised fuel were reflected by a reduction of saturated fatty acid methyl esters (SFAME) in the composition by 1.5-6%, by a decrease in the CFPP values by 2-4°C and by a shift of the DSC high temperature melting peak (approx. 5°C) towards lower temperatures in comparison to the original fuel. Calorific values of the winterised WCOME did not significantly change and boiling temperatures increased (approx. 26%) in comparison to the non-winterised WCOME. 相似文献
15.
Pilar Olivares-Carrillo Joaquín Quesada-Medina 《The Journal of Supercritical Fluids》2011,58(3):378-384
The transesterification of soybean oil with supercritical methanol in a batch reactor with no added catalyst was investigated, studying the evolution of intermediate products (monoglycerides and diglycerides) as well as the conversion of triglycerides and the yield of fatty acid methyl esters and glycerol. Experiments were carried out in a temperature range of 250–350 °C (12–43 MPa) at reaction times of between 15 and 90 min for a methanol-to-oil molar ratio of 43:1. The best reaction conditions in this one-step supercritical process (325 °C/35 MPa and 60 min), in which triglyceride conversion was practically total, led to a maximum yield of fatty acid methyl esters of 84%. In these conditions an 8.1 wt% of monoglycerides and diglycerides remained in the medium. Although the use of more severe reaction conditions (longer reaction times and higher temperatures) reduced the content of these glycerides, the yield of methyl esters decreased due to their thermal decomposition. 相似文献
16.
Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process 总被引:1,自引:0,他引:1
Huayang He 《Fuel》2007,86(3):442-447
A system for continuous transesterification of vegetable oil using supercritical methanol was developed using a tube reactor. Increasing the proportion of methanol, reaction pressure and reaction temperature can enhance the production yield effectively. However, side reactions of unsaturated fatty acid methyl esters (FAME) occur when the reaction temperature is over 300 °C, which lead to much loss of material. There is also a critical value of residence time at high reaction temperature, and the production yield will decrease if the residence time surpasses this value. The optimal reaction condition under constant reaction temperature process is: 40:1 of the molar ratio of alcohol to oil, 25 min of residence time, 35 MPa and 310 °C. However, the maximum production yield can only be 77% in the optimal reaction condition of constant reaction temperature process because of the loss caused by the side reactions of unsaturated FAME at high reaction temperature. To solve this problem, we proposed a new technology: gradual heating that can effectively reduce the loss caused by the side reactions of unsaturated FAME at high reaction temperature. With the new reaction technology, the methyl esters yield can be more than 96%. 相似文献
17.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature. 相似文献
18.
A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300 °C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 相似文献
19.
Biodiesel production from lipids (vegetable oils and animal fats) with non-catalytic supercritical methanol (SCM) has several advantages over that of homogeneous catalytic process, including a high production efficiency, environmentally friendliness and a wide range of possible feedstocks. This article reviews the effect of the operating parameters on the lipid conversion to biodiesel with SCM, such as the temperature, pressure, methanol to oil molar ratio, and reaction time, for both batch and continuous systems, including the effect of the mixing intensity and dispersion in tubular reactors. The operating temperature is the key parameter to control either extent of reaction or other parameters. Studies on evaluating the chemical kinetics, phase behavior, binary vapor-liquid equilibrium (VLE) of lipid conversion in SCM are summarized. The pseudo-first order model is suitable to simplify the system at high methanol to oil molar ratios, but it is inadequate at a low methanol concentration which instead requires the second order model. Transition temperatures of reaction mixture depend on the critical point of reaction mixture which is assigned by methanol to oil molar ratio and amount of co-solvents in the system. For binary VLE studies, no single thermodynamic model for the overall process is available, probably because of the differences in the polarity between the initial and the final state of the reaction system. Since traditional operating parameters of the lipid conversion in SCM involve elevated temperatures and pressures, techniques for allowing milder operating conditions that employ the addition of co-solvents or catalysts are discussed. The ongoing and more extensive research on co-solvents, heterogeneous catalysts, phase behavior and multicomponent VLE of lipid conversion to biodiesel with SCM should provide a better understanding and achieve the goal of green biodiesel production technology in the near future. 相似文献
20.
Man Kee LamKeat Teong Lee 《Fuel Processing Technology》2011,92(8):1639-1645
World energy crisis has become the foremost crucial topic in this new era. Unstable price of petroleum fuel in the world market and recent environmental concerns on gas emission during combustion have led to intensive search for alternative energy sources that are not only renewable but sustainable. Without doubt, one of the most important evolutions in the renewable energy sector is the development of biodiesel. Currently commercial biodiesel production is using methanol (non-renewable) as the main reactant to produce biodiesel due to its wide availability and low cost. However, biodiesel produced using methanol are not completely renewable as methanol can only be derived from petroleum fuel. Unfortunately, not much attention has been given on this issue. On the other hand, ethanol may emerge as a good solution to this problem as ethanol can be derived from renewable sources through fermentation process. The only constraint on the use of ethanol is its slow reaction rate in transesterification reaction and therefore resulted to energy inefficient biodiesel production process. Such limitations worsen if solid acid catalyst is used in the reaction. Thus, the aim of this present work is to introduce a simple mixed methanol-ethanol method to overcome these limitations and to produce biodiesel in a greener and sustainable manner. The effect of methanol to ethanol to oil molar ratio, reaction temperature, catalyst loading and reaction time towards biodiesel yield are discussed in detail. From this study, it was found that an optimum biodiesel yield of 81.4% can be attained at a relatively short reaction time of 1 h. 相似文献