首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liwen Ji 《Electrochimica acta》2010,55(5):1605-7699
Copper-loaded carbon nanofibers are fabricated by thermally treating electrospun Cu(CH3COO)2/polyacrylonitrile nanofibers and utilized as an energy-storage material for rechargeable lithium-ion batteries. These composite nanofibers deliver more than 400 mA g−1 reversible capacities at 50 and 100 mA g−1 current densities and also maintain clear fibrous morphology and good structural integrity after 50 charge/discharge cycles. The relatively high capacity and good cycling performance of these composite nanofibers, stemmed from the integrated combination of metallic copper and disordered carbon as well as their unique textures and surface properties, make them a promising electrode candidate for next-generation lithium-ion batteries.  相似文献   

2.
Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g−1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li3N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries.  相似文献   

3.
Interfacial structures of electrode-current collector and electrode-electrolyte have been designed to be stabilized for improved cycling performance of amorphous silicon (Si) that is considered as an alternative anode material to graphite for lithium-ion batteries. Interfacial structural stabilization involves the interdigitation of Si electrode-Cu current collector substrate by anodic Cu etching with thiol-induced self-assembly, and the formation of self-assembled siloxane on the surface of Si electrode using silane. The novel interfacial architecture possesses promoted interfacial contact area between Si and Cu, and a surface protective layer of siloxane that suppresses interfacial reactions with the electrolyte of 1 M LiPF6/ethylene carbonate (EC):diethylene carbondate (DEC). FTIR spectroscopic analyses revealed that a stable solid electrolyte interphase (SEI) layer composed of lithium carbonate, organic compounds with carboxylate metal salt and ester functionalities, and PF-containing species formed when having siloxane on Si electrode. Interfacially stabilized Si electrode exhibited a high capacity retention 80% of the maximum discharge capacity after 200 cycles between 0.1 and 1.5 V vs. Li/Li+. The data contribute to a basic understanding of interfacial structural causes responsible for the cycling performance of Si-based alloy anodes in lithium-ion batteries.  相似文献   

4.
M. Letellier  F. Chevallier 《Carbon》2007,45(5):1025-1034
We show a continuous, in situ nuclear magnetic resonance (NMR) experiment on a lithium/graphite electrochemical cell. The objective is to study a commercial graphite currently used as negative electrodes in secondary lithium batteries. A plastic cell is made, with metallic lithium as the counter electrode and 1 mol dm−3 LiPF6/ethylene carbonate (EC) + diethylcarbonate (DEC) electrolyte. The reversible capacity is 346 mAh/g and the irreversible capacity 55 mAh/g, measured in the galvanostatic mode, at a rate of C/20 (20 h for the theoretical capacity of LiC6) for the first cycle. We show the first discharge and the first charge of the cell inside the magnet and record simultaneously and regularly (in real time) static 7Li NMR spectra. As expected, we observe the quadrupolar lines characteristic of the lithium graphite intercalation compounds (GICs). During the discharge, the two types of in-plane densities of Li are successively found that correspond to the dilute LiC9, then to the dense LiC6 configuration; during the charge, we observe the successive decrease of these states. The galvanostatic curve helps to identify the stages NMR signature and the stages coexistence.  相似文献   

5.
Comparative studies of first- and second-order Raman spectra of multi-walled carbon nanotubes (MWCNT) and three other graphitic materials - carbon fiber, powdered graphite and highly ordered pyrolytic graphite - are reported. Three laser excitation wavelengths were used: 514.5, 785 and 1064 nm. In first-order Raman spectra, the positions of the bands D, G and D′ (1100-1700 cm−1) presented very similar behavior, however the intensity (I) ratio ID/IG ratio showed differed behaviors for each material which may be correlated to differences in their structural ordering. In the second-order spectra, the G′ band varied strongly according to structure with the infrared laser excitation.  相似文献   

6.
Alkali carbonate-coated graphite electrode for lithium-ion batteries   总被引:1,自引:0,他引:1  
S. Komaba  M. Watanabe  N. Kumagai 《Carbon》2008,46(9):1184-1193
Charge and discharge behavior of a graphite electrode for rechargeable lithium-ion batteries was successfully improved by pretreatment of graphite powders with A2CO3 (A = Li, Na, and K) aqueous solutions. In the process of the pretreatment, graphite powders were simply dispersed in the aqueous solutions, and then filtered and dried to modify the surface of graphite powder with solid alkali carbonate. With the optimum concentration of each carbonate, 1 wt.% Li2CO3, 5 wt.% Na2CO3, and 1 wt.% K2CO3, the irreversible reaction at the initial cycle was suppressed by the pretreatment which was capable of modifying the solid electrolyte interphase formed on the graphite electrode surface. Furthermore, the rate capability was improved by the surface modification, that is, the reversible discharge capacities at 175 mA g−1 increased with adequate capacity retention in a 1 mol dm−3 LiClO4 ethylene carbonate:diethyl carbonate electrolyte solution because of the kinetics enhancement of lithium-ion transfer at the interface.  相似文献   

7.
Le Yu 《Electrochimica acta》2010,56(2):767-775
FeOF thin film has been successfully fabricated by reactive pulsed laser deposition for the first time, and its electrochemical behavior was examined as a negative electrode active material in lithium-ion batteries. The electrochemical properties of the as-deposited FeOF thin film during the first charging and discharging have been investigated by the galvanostatic cycling and cyclic voltammetry measurements. By using ex situ X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area electron diffraction measurements (SAED), it can be found that FeOF was initially decomposed into Fe0, LiF, and Fe2O3 after discharging to 1.0 V. The newly formed Fe2O3 is then subsequently reduced into Li2O and Fe0 after further discharging to 0.01 V. In the subsequent cycle, the reduction peaks at 0.76 V and the oxidation-reduction peaks at 1.6 and 1.9 V could be attributed to the reversible decomposition and formation of Li2O with the conversion reaction of Fe2O3 into Fe.  相似文献   

8.
Anatase type TiO2 has been previously largely reported as a candidate negative electrode material for lithium-ion batteries. We report here for the first time the complete in situ Raman study of lithium insertion and de-insertion into three variously nano-sized TiO2 anatase powders (Prolabo, ca. 80 nm, AK1, ca. 15 nm and MTi5 ca. 8 nm), of which AK1 and MTi5 show superior capacity and cyclability. From these measurements realized in a galvanostatic mode between 3 and 1 V versus Li/Li+, the phase transition from a tetragonal to an orthorhombic structure was clearly observed to take place at different quantities of x in LixTiO2. These results confirm the extension of the solid solution domain as particle size is reduced. For the smaller TiO2 nano-sized materials (AK1 and MTi5), a more pronounced decrease in band intensity when x > 0.3 for LixTiO2, was observed and may be related to the decrease in the optical skin depth linked to the conductivity increase as lithiation proceeds.  相似文献   

9.
In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%.The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g−1. The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite.  相似文献   

10.
Al-C, Al-Fe and Al-Fe-C composite materials have been prepared by high-energy ball milling technique. The electrochemical measurements demonstrated that the Al-Fe-C composites have greatly improved electrochemical performances in comparison with Al, Al-C and Al-Fe anode. For example, Al71Fe9C20 can deliver the reversible capacity of 436 mAh g−1 at first cycle and 255 mAh g−1 at 15th cycle. This improved electrochemical performance could be attributed to the alloying formation of Al with Fe and the buffering effect by the graphite matrix. This suggests that the Al-Fe-C composite has a potential possibility to be developed as an anode material for lithium-ion batteries.  相似文献   

11.
A graphite/TiO2 full cell has been developed as a new safety energy storage system using a highly safety process. The crystal structures of the anatase TiO2 electrode have been investigated with respect to the performance of the electrodes. Due to the large anion intercalation into the graphite positive electrode, the possible charging potential can be raised to around 5.3 V against the Li/Li+ electrode, which is a higher charging voltage than lithium-ion batteries (maximum voltage is around 4.3 V vs. Li/Li+). In situ XRD measurements have been carried out on both the cathode and anode electrodes of the graphite/TiO2 cell during the charge process to elucidate the intercalation mechanism.  相似文献   

12.
An effective method of carbothermal reduction was employed to prepare spherical microcrystal NiSnx alloy powders from oxides of Sn and Ni used as anode materials for Li-ion battery. According to XRD, SEM and TEM analysis, the synthesized spherical NiSnx powders show a loose submicro/micro-sized structure and a multi-phase composition. The prepared NiSnx alloy composite electrode exhibits a stable discharge capacity of electrode is ca. 380 mAh g−1 at constant current density of 50 mA g−1, and can be retained at 350 mAh g−1 after 25 cycles. Moreover, NiSnx alloys exhibit excellent high rate performance, i.e. stable discharge capacities of 300-310 mAh g−1 and the coulombic efficiencies of 97.5-99.5% have been obtained at the current density of 500 mA g−1. The loose submicro-sized particle structural characteristic and the Ni addition in Sn matrix should be responsible for the improvement of cycling stability of NiSnx electrode. The carbothermal reduction method is simple, low-cost and mass-productive, which should be viable to other alloy composite materials system of rechargeable lithium ion batteries.  相似文献   

13.
The LiZnxMn2−xO4 (x = 0.00-0.15) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 °C. After drying, the gel precursors were ground and heated at 900 °C. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valance state of Mn in the synthesized materials. The sample exhibited a well-defined spinel structure and the lattice parameter was linearly increased with increasing the Zn contents in LiZnxMn2−xO4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmission electron microscopy, respectively. Electrochemical properties were characterized for the assembled Li/LiZnxMn2−xO4 coin type cells using galvanostatic charge/discharge studies at 0.5 C rate and cyclic voltammetry technique in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s−1. Among them Zn doped spinel LiZn0.10Mn1.90O4 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.  相似文献   

14.
Surface layer formed on Sn thin film electrode in 1 M LiPF6/EC:DMC electrolyte was characterized using ex situ FTIR spectroscopy with the attenuated total reflection technique. IR spectral analyses showed that the immersion of Sn film in the electrolyte resulted in a chemical interfacial reaction leading to the passivation of Sn surface with primarily PF-containing inorganic surface species and small amount of organics. When constant current cycling was conducted with lithium cells with Sn film electrode at 0.1-1.0 V vs. Li/Li+, the interfacial reaction between Sn and electrolyte appeared significantly intensified that the features of PF-containing species became enhanced and new IR features of organic species (e.g. alkyl carbonate/carboxylate metal salts and ester functionalities) were observed. The surface layer continued to form with cycling, partly due to non-effective surface passivation as well as particle pulverization accompanied by enlargement of active surface area. Comparative IR spectral analyses indicated that the interfacial reaction between Sn and PF6 anion played a leading role in forming the surface layer, which is different from lithiated graphite that had mainly organic surface species. The data contribute to a better understanding of the interfacial processes occurring on Sn-based anode materials in lithium-ion batteries.  相似文献   

15.
LiFePO4 can be used as a positive electrode material for lithium-ion batteries by making composite with electrical conductive carbonaceous materials. In this study, LiFePO4/C (carbon) composite was prepared by a soft chemistry route, in which sucrose was used as a carbon source of a low price. We tried to optimize a Li/(LiFePO4/C) cell performance through changing synthetic conditions and discussed the factors affecting the electrochemical performances of the cell, such as the amount of the carbon source, synthetic temperature, gas flow rate of pyrolysis and the formation of secondary phases. It was found that the connection of the residual carbon and Fe2P to LiFePO4 particles and the amount of these two phases were important factors. In our experimental conditions, LiFePO4/C including 9.72 wt.% of residual carbon, prepared at 800 °C for 12 h showed the highest reversible capacity and the best C rate performance among the synthesized materials; 130 mAh g−1 at 10C rate and 50 °C.  相似文献   

16.
J. Xie  G.S. Cao  M.J. Zhao 《Electrochimica acta》2005,50(13):2725-2731
In situ solvothermally synthesized composite (SSC) and mechanically blended composite (MBC) of nanosized CoSb3 and multiwalled carbon nanotubes (MWNTs) were prepared and investigated as potential anode materials for Li-ion batteries. It was found that SSC exhibits an entanglement structure of nanosized CoSb3 and MWNTs and shows significantly better cycling stability than MBC. The reversible capacity of SSC electrode reaches 312 mA h g−1 at the first cycle and remains above 265 mA h g−1 after 30 cycles.  相似文献   

17.
Carbon-coated SnS2 nanoparticles were prepared by a simple solvothermal route at low temperature. A carbon coating with a thickness of about 5 nm was deposited on nano-sized SnS2 particles to serve as the anode in lithium-ion batteries. Both the nanostructure and the morphology of the SnS2 powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The coated samples were used as active anode materials for lithium-ion batteries, and their electrochemical properties were examined by constant current charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The reversible capacity of the carbon-coated SnS2 after 50 cycles was 668 mAh/g, which was much higher than that of the uncoated SnS2 (293 mAh/g). The carbon-coated SnS2 also had a better rate capability than the uncoated SnS2 in the range of 0.008-1 C. The capacity retention of the carbon-coated SnS2 was improved due to its good conductivity and the effective buffer matrix that alleviated volume expansion during the charge-discharge process.  相似文献   

18.
The nanocrystalline CoSb2 was prepared by a solvothermal method at various temperatures and was investigated as a potential anode material for lithium-ion batteries. It was found that the CoSb2 is highly crystallized at 190 °C and with almost a single-phase structure. The morphology of the alloy powder plays an important role in their cycling behavior. The large reversible capacity and better capacity retention of these nanosized CoSb2 alloys make them promising anode materials for Li-ion batteries.  相似文献   

19.
Macroporous material of Sn-Cu alloy of different pore sizes designated as anode in lithium-ion batteries were fabricated through colloidal crystal template method. The structure and electrochemical properties of the macroporous Sn-Cu alloy electrodes were examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and galvanostatic cycling. The results demonstrated that the electrodes of macroporous Sn-Cu alloy with pore size respectively of 180 and 500 nm can deliver reversible capacity of 350 and 270 mAh g−1 up to 70th cycles of charge/discharge. The cycle performance of the macroporous Sn-Cu alloy of 180 nm in pore size is better than that of the macroporous Sn-Cu alloy with 500-nm-diameter pores. It has revealed that the porous structure of the macroporous Sn-Cu alloy material is of importance to strengthen mechanically the electrode and to reduce significantly the effect of volume expansion during cycling.  相似文献   

20.
D. Billaud  L. Balan  P. Willmann 《Carbon》2006,44(12):2508-2515
Electrochemical lithium insertion was carried out in tin-graphite composites obtained by two different preparation processes. In the first graphite was mixed with the products obtained by reduction of SnCl4 with Na tert-Butanoate (t-BuONa)-activated NaH (two-step synthesis). The second used materials synthesized by reducing SnCl4 with a graphite and (t-BuONa)-activated NaH suspension in THF (one-pot synthesis). Both composites were characterized by X-ray diffraction and transmission electron microscopy . It appeared that the tin particle size was controlled by the reduction time of SnCl4. The stability of the electrochemical capacity of composites prepared by the two-step synthesis is dependent on the tin particle size: a stable capacity upon cycling was shown with subnanometer particles while a capacity fade was observed with larger nanoparticles. In materials prepared by the one pot synthesis, tin was present either as nanopartcles supported on graphite or as free aggregates. An initial reversible capacity of 630 mA hg−1 decayed to a constant value of 415 mA hg−1 after 12 charge/discharge cycles. It was hypothesized that the fraction of tin bound to graphite contributed to the stable reversible capacity while free tin aggregates were responsible for its decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号