首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triacylglycerols (TGs) are naturally occurring oils abundant in many crops. A series of batch uncatalyzed thermal decomposition experiments were performed using canola and soybean oils to explore pathways of TG cracking. A detailed gas chromatographic protocol based on mass spectrometric identification and flame ionization quantification was applied to the organic liquid product generated upon cracking. Reaction conditions were identified that resulted in a novel organic liquid product (OLP) composition compared to previously reported work. Under these conditions (temperatures within a 420-440 °C range) a new route for TG thermolysis was discovered in which cracking reactions of original TG-bound fatty acids were nearly complete and led to the formation of 15-25 wt.% C2-C10 linear saturated monocarboxylic acids and ca. 30% linear alkanes. Less than 2 wt.% C16-C18 fatty acids which were originally present in the feedstocks as glycerol triesters were found in the OLP. These reactions appear to be kinetically controlled due to abundant hydrogen formation. This route provides a significant enrichment of low-MW compounds in the OLP (65-70 wt.% being <C11) and thus may be considered as a new option for the production of replacement products for petroleum-based fuels and chemicals.  相似文献   

2.
Conventional biodiesel production methods utilize alcohol as acyl acceptor and produces glycerol as side product. Hence, with escalating production of biodiesel throughout the world, it leads to oversupply of glycerol and subsequently causes devaluation in the market. In this study, methyl acetate was employed as acyl acceptor in non-catalytic supercritical methyl acetate (SCMA) process to produce fatty acid methyl esters (FAME) and side product of triacetin, a valuable fuel additive instead of glycerol. Consequently, the properties of biodiesel produced (FAME and triacetin) are superior compared to conventional biodiesel method (FAME only). In this research, the effects of reaction temperature, reaction time and molar ratio of methyl acetate to oil on the yield of biodiesel were investigated. Apart from that, the influence of impurities commonly found in waste oils/fats such as free fatty acids and water were studied as well and compared with methanol-based reactions of supercritical and heterogeneous catalysis. Results show that biodiesel yields in SCMA process could achieve 99 wt.% when the operating conditions were fixed at 400 °C/220 bar for reaction temperature, methyl acetate/oil molar ratio of 30:1 and 60 min of reaction time. Furthermore, SCMA did not suffer from adverse effect with the presence of impurities, proving that SCMA has a high tolerance towards contamination which is crucial to allow the utilization of inexpensive waste oils/fats as biodiesel feedstock.  相似文献   

3.
D.L. Manuale 《Fuel》2011,90(3):1188-1196
Different feedstocks of varying acidity ranks and water contents were subjected to a series of discontinuous steps that simulated a biodiesel production process. The three steps comprised: (i) the non-catalytic transesterification with supercritical methanol at 280 °C; (ii) the distillation of the unreacted methanol, water and volatile products; and (iii) the adsorption of the impurities with adequate adsorbents. Refined soy oil, chicken oil and waste cooking oil were subjected to the same simple procedure. The process produced biodiesel complying with the water, acid, glycerides and methyl esters content specifications of the EN 14214 standard.Biodiesel production by the reaction of oils in supercritical methanol at 280 °C and methanol-to-oil molar ratios of 15 and 20 produced amounts of glycerol as small as 0.02%. This simplified the subsequent refining of the biodiesel and is considered an advantage over the classic alkali-catalyzed process (that produces 10% of glycerol by-product) because washing steps can be spared.The contents of methyl esters, water and free fatty acids showed a volcano pattern when plotted as a function of the reaction time. In the case of the free fatty acids this was attributed to the initial reaction of water and triglycerides to form acids and glycerol that increased the acidity of the product mixture. At longer reaction times these acids were likely transformed into methyl esters or were decarboxylated to hydrocarbons and CO2. Water formation was attributed to glycerol decomposition and esterification of free fatty acids.The design of a simple process for biodiesel production using a single reaction step with negligible glycerol production and an adsorption-based refining step was thus studied. A possible scheme integrating reaction, methanol recycling, biodiesel purification and heat recovery was discussed. Advantages and disadvantages of process units were analyzed on terms of operating cost and simplicity.  相似文献   

4.
Thermal stability of biodiesel in supercritical methanol   总被引:1,自引:0,他引:1  
Hiroaki Imahara 《Fuel》2008,87(1):1-6
Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270 °C/17 MPa and 380 °C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270 °C/17 MPa, but at 350 °C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270 °C/17 MPa and 350 °C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300 °C, preferably 270 °C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production.  相似文献   

5.
In this study, the hydrothermal gasification of biomass in supercritical water is investigated. The work is of peculiar value since a real biomass, olive mill wastewater (OMW), is used instead of model biomass compounds. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. The high content of organics makes OMW a desirable biomass candidate as an energy source. The hydrothermal gasification experiments for OMW were conducted with five different reaction temperatures (400, 450, 500, 550 and 600 °C) and five different reaction times (30, 60, 90, 120 and 150 s), under a pressure of 25 MPa. The gaseous products are mainly composed of hydrogen, carbon dioxide, carbon monoxide and C1-C4 hydrocarbons, such as methane, ethane, propane and propylene. Maximum amount of the gas product obtained is 7.71 mL per mL OMW at a reaction temperature of 550 °C, with a reaction time of 30 s. The gas product composition is 9.23% for hydrogen, 34.84% for methane, 4.04% for ethane, 0.84% for propane, 0.83% for propylene, 49.34% for carbon dioxide, and 0.88% for minor components such as n-butane, i-butane, 1-butene, i-butene, t-2-butene, 1,3-butadiene and nitrogen at this reaction conditions.  相似文献   

6.
The effect of demineralization on conversion of Soma Lignite in supercritical water extraction was studied using a batch autoclave operated at 400, 450 and 500 °C under nitrogen atmosphere. The experiments were carried out to investigate the effect of mineral matter and temperature on gaseous, liquid, residue yield and composition of gaseous products. According to the results, main product in gaseous state is CO2. Temperature is key factor affecting product distribution when compared the effect of minerals in lignite. As temperature was increased, yield of gas and solid residue increased, while yields of liquid decreased for raw and demineralized lignite samples. The removal of mineral matter caused to decrease the conversion for all lignite samples and to increase the carbon content of solid residue in supercritical water extraction.  相似文献   

7.
Jude A. Onwudili 《Fuel》2006,85(1):75-83
Pyrene was used as a typical four-ring polycyclic aromatic hydrocarbon (PAH), to investigate the mechanisms and incineration behaviour of large organic molecules in a batch supercritical water oxidation reactor using hydrogen peroxide as oxidant. The distribution of carbon as gaseous species and organic species in relation to the temperature and pressure, and reaction time was monitored. The results showed that at 200 °C, pyrene was only slightly decomposed but as the temperature increased to 250 °C and then to 280 °C, carbonisation and thermal cracking became prevalent leading to char formation and decomposition of pyrene to phenanthrene, and later naphthalene. Rapid dissolution and oxidation of the char and organic species started occurring from 300 °C. Increasing reaction time resulted in increased formation of carbon dioxide and carbon monoxide. Initially high product formation of phenanthrene at short reaction times was followed by high decomposition of the organic products in solution as the reaction conditions became progressively more severe. Oxygenated organic species such as aldehydes, ketones, phenols, xanthone, and benzoic acid were identified as the temperature and reaction times were increased between 300 and 380 °C. From the analytical results obtained, carbon mass balances were calculated for each experiment. A proposed mechanism for the observed oxidative decomposition of pyrene is also reported.  相似文献   

8.
A thermodynamic model is proposed for the determination of kinematic viscosities of saturated fatty acid methyl esters (FAMEs) of various chain lengths at different temperatures. The linearity of the natural logarithm of viscosity-carbon number, plot is limited to a narrow carbon number range. The predicted viscosities of FAMEs of C12:0-C18:0, which are commonly found in vegetable oils and used as biodiesels, agree well with the experimental values. The highest difference is 0.354 cSt (5.60%), for methyl stearate at 40 °C. When the proposed method for viscosity calculation of saturated FAMEs are used in combination with the methods for viscosities of biodiesel the mixtures, the predicted viscosities agree well with the values reported in the literatures and the measured values. The differences between the predicted viscosities and those reported in the literatures (at 40 °C) are 1.08 to 8.56% (for eight different vegetable oil methyl esters). The differences between the predicted viscosities and the measured values for coconut methyl esters, at 25, 40 and 50 °C are 9.20, 5.53 and 5.57%, respectively. The differences are slightly higher than those of palm oil methyl esters (4.48, 2.06 and 2.48%, respectively).The proposed method can also be applied to predict the viscosities of free fatty acids and it is speculated it may be applied to other homologous series as well.  相似文献   

9.
Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst to give the corresponding monoalkyl esters. This article reports experimental data on the production of fatty acid methyl esters from vegetable oils, soybean and cottonseed oils using sodium hydroxide as alkaline catalyst. The variables affecting the yield and characteristics of the biodiesel produced from these vegetable oils were studied. The variables investigated were reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-methanol molar ratio (1:3-1:9). From the obtained results, the best yield percentage was obtained using a methanol/oil molar ratio of 6:1, sodium hydroxide as catalyst (1%) and 60 ± 1 °C temperature for 1 h. The yield of the fatty acid methyl ester (FAME) was determined according to HPLC. The composition of the FAME was determined according to gas chromatography. The biodiesel samples were physicochemically characterized. From the results it was clear that the produced biodiesel fuel was within the recommended standards of biodiesel fuel.  相似文献   

10.
Y.C. Sharma  Bhaskar Singh 《Fuel》2010,89(7):1470-1474
Kusum (Schleichera triguga), a non-edible oil bearing plant has been used as an ideal feedstock for biodiesel development in the present study. Various physical and chemical parameters of the raw oil and the fatty acid methyl esters derived have been tested to confirm its suitability as a biodiesel fuel. The fatty acid component of the oil was tested by gas chromatography. The acid value of the oil was determined by titration and was found to 21.30 mg KOH/g which required two step transesterification. Acid value was brought down by esterification using sulfuric acid (H2SO4) as a catalyst. Thereafter, alkaline transesterification was carried out using potassium hydroxide (KOH) as catalyst for conversion of kusum oil to its methyl esters. Various parameters such as molar ratio, amount of catalyst and reaction time were optimized and a high yield (95%) of biodiesel was achieved. The high conversion of the feedstock into esters was confirmed by analysis of the product on gas chromatograph-mass spectrometer (GC-MS). Viscosity and acid value of the product biodiesel were determined and found to be within the limits of ASTM D 6751 specifications. Elemental analysis of biodiesel showed presence of carbon, hydrogen, oxygen and absence of nitrogen and sulfur after purification. Molar ratio of methanol to oil was optimized and found to be 10:1 for acid esterification, and 8:1 for alkaline transesterification. The amounts of H2SO4 and KOH, 1% (v/v) and 0.7% (w/w), respectively, were found to be optimum for the reactions. The time duration of 1 h for acid esterification followed by another 1 h for alkaline transesterification at 50 ± 0.5 °C was optimum for synthesis of biodiesel.  相似文献   

11.
Pyrolysis of an organic concentrate from municipal solid waste was carried out using a bench-scale fluidized bed reactor at 350-540 °C comparing Al2O3 with activated olivine sand as bed materials. A maximum oil yield of 50 wt.% was obtained using the activated olivine sand at 400 °C while only 45 wt.% was obtained at 500 °C using Al2O3. The bio-oils using activated olivine sand at 400 °C had an H/C ratio of 1.50 and O/C ratio of 0.37 and were less aromatic and less nitrogenous compare to the oils obtained using Al2O3 at 400 °C where the H/C ratio was 1.32 and the O/C ratio was 0.44. The aromatic compounds were found to be reduced while the aliphatic compounds increased in the oils generated using activated olivine sand. The calorific value of the bio-oil at 500 °C was 29 MJ/kg using activated olivine sand while the bio-oil using Al2O3 was 23 MJ/kg. The presence of iron, magnesium and other oxides probably promotes the removal of oxygen, which indicates that the activation energy of C―O bond breakage is reduced compared to the C―C bonds, thus promoting dehydration, decarboxylation and alkalation reactions to produce aliphatic fatty acid at lower temperatures.  相似文献   

12.
New evidence on the thermal decomposition of fatty acid methyl esters during biodiesel synthesis in supercritical conditions is presented. Thermal decomposition products were detected chromatographically, by applying the UNE-EN 14105:2003 standard, as a broad single peak during the determination of glycerides in the reaction samples. These degradation products could be quantified chromatographically by the above standard because the area of the peak was proportional to the disappearance of the polyunsaturated fatty acid methyl esters, which contain two or more double bonds (methyl linoleate and linolenate), generated during biodiesel synthesis from soybean oil. In the experimental conditions tested, thermal decomposition reactions of these unsaturated fatty acid methyl esters began to appear at 300 °C/26 MPa, and were more intense as the temperature rose. For its part, the main saturated fatty acid methyl ester (methyl palmitate) generated during the reaction was hardly decomposed at all in the experimental conditions tested and only began to disappear at 350 °C/43 MPa.  相似文献   

13.
Pavel Šimá?ek  David Kubi?ka 《Fuel》2010,89(7):1508-1513
Hydrocracking of pure petroleum vacuum distillate and the same fraction containing 5 wt.% of rapeseed oil was carried out at 400 and 420 °C and under a hydrogen pressure of 18 MPa over commercial Ni-Mo catalyst. Reaction products were separated by distillation into kerosene, gas oil and the residue. Fuel properties of fractions suitable for diesel production were evaluated (gas oils and remixed blends of kerosene and gas oil). Gas oils obtained from co-processing showed very good fuel properties as the remixed distillates did. Gas oil obtained from co-processing at 420 °C showed also reasonable key low-temperature properties (cloud point: −23 °C, CFPP: −24 °C) similar to those of gas oil obtained from pure petroleum raw material processing.  相似文献   

14.
The pyrolysis of wood was carried out in an Entrained Flow Reactor at high temperature (650 to 950 °C) and under rapid heating conditions (> 103 K s− 1). The influence of the diameter and initial moisture of the particle, reactor temperature, residence time and the nature of the gaseous atmosphere on the composition of the gaseous products has been characterised. Particle size, between 80-125 and 160-200 μm, did not show any impact. Pyrolysis and tar cracking essentially happen in very short time period: less than 0.6 s; the products yields are only slightly modified after 0.6 s in the short residence times (several seconds) of our experiments. Higher temperatures improve hydrogen yield in the gaseous product while CO yield decreases. Under nitrogen atmosphere, after 2 s at 950 °C, 76% (daf) of the mass of wood is recovered as gases: CO, CO2, H2, CH4, C2H2, C2H4 and H2O. Tests performed under steam partial pressure showed that hydrogen production is slightly enhanced.  相似文献   

15.
This work investigates the production of fatty acid ethyl esters (FAEEs) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process. Experiments were performed in a microtube reactor in the temperature range of 523 K to 598 K, from 10 MPa to 20 MPa, varying the oil to ethanol molar ratio from 1:10 to 1:40, and evaluating the effects of addition of carbon dioxide as co-solvent. Results showed that ethyl esters yield obtained in the microtube reactor (inner diameter 0.76 mm) were higher than those obtained in a tubular reactor (inner diameter 3.2 mm) possibly due to improved mass-transfer conditions attained inside the microtube reactor. Non-negligible reaction yields (70 wt.%) were achieved along with low total decomposition of fatty acids (< 5.0 wt.%). It is shown that the use of carbon dioxide as co-solvent in the proposed microtube reactor did not significantly affect the ethyl esters yield within the experimental variable ranges investigated.  相似文献   

16.
The influence of pressure on the yield of gaseous hydrocarbon products derived from pyrolysis of Fushun and Xianfeng coals have been investigated in an anhydrous and confined system. Pyrolysis was performed in sealed gold tubes at 380 °C and under the pressures ranging from 50 to 250 MPa for 24 h. The results show that the effect of pressure on coal pyrolysis and product generation should not be ignored. For the Fushun and Xianfeng lignite, the yields of gaseous hydrocarbon generation increase by 9.1% and 12.7% when the pressure increases from 50 to 250 MPa, respectively. However, the yields of hydrogen gas decrease greatly with pressure. The hydrogen gas yields of Fushun and Xianfeng lignite decrease by 76.5% and 75.9%, respectively, when the pressure increases from 50 to 250 MPa. Yields of carbon dioxide gas of Fushun and Xianfeng coals were enhanced with increasing pressure by 7.4% and 8.9% respectively. Data of stable carbon isotope compositions reveal that the methane and ethane carbon isotope values are also affected by pressure, as they become heavier by approximately 1.2‰ (PDB) when the pressure is increased from 50 to 250 MPa. Simultaneously, the hydrogen isotope compositions of methane and ethane increase by 10.3‰ and 7.1‰, respectively. Our experimental results suggest that the increase in gaseous hydrocarbon yield is resulted from synthesis of carbon dioxide and hydrogen and pressure serves to facilitate the synthetic process.  相似文献   

17.
The production of ethyl esters of fatty acids from a feed material of crude palm oil (CPO) with a high free fatty acid (FFA) content under microwave assistance has been investigated. Parametric studies have been carried out to investigate the optimum conditions for the esterification process (amount of ethanol, amount of catalyst, reaction time, and microwave power). As a result, a molar ratio of FFA to ethanol of 1:24 with 4% wt./wt. of H2SO4/FFA, a microwave power of 70 W, and a reaction time of 60 min have been identified as optimum reaction parameters for the esterification process aided by microwave heating. At the end of the esterification process, the amount of FFA had been reduced from 7.5 wt.% to less than 2 wt.%. Similar results were obtained following conventional heating at 70 °C, but only after a reaction time of 240 min. Transesterification of the esterified palm oil has been accomplished with a molar ratio of CPO to ethanol of 1:4, 1.5 wt.% KOH as a catalyst, a microwave power of 70 W, and a reaction time of 5 min. This two-step esterification and transesterification process provided a yield of 80 wt.% with an ester content of 97.4 wt.%. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.  相似文献   

18.
A two-step process to generate H2 gas; first by milling polystyrene (PS) or poly(vinyl alcohol) (PVA) with Ni(OH)2 and Ca(OH)2, followed by heating of the milled product in the second-step was performed in this work. Polymer and hydroxide mixtures obtained after milling for 60 min and heating to 700 °C showed H2, CH4, H2O, CO, and CO2 as the main gaseous products with H2 as the dominant gas generated between 350 and 500 °C. Analysis of the gaseous products by TG-MS and gas-chromatography, and solid products by TG-DTA and XRD shows that CO2 gas was fixed as CaCO3 at temperatures between 350 to 600 °C allowing generation of H2 gas with concentrations over 95% for PS and over 98% for PVA. The results in this study show that milling of solid based hydrocarbon compounds with nickel and calcium hydroxides allows dispersion of nickel to hydrocarbon surfaces and facilitates C-C bond rupture in polymer(s) during heating at temperatures below 500 °C, at the same time calcium adsorbs CO2. This process could be developed to treat hydrocarbon based wastes such as plastics, biomass or combinations at low temperatures avoiding syngas purification and separation steps.  相似文献   

19.
Dry autothermal reforming of glycerol uses a combination of dry (CO2) reforming and partial oxidation reactions to produce syngas rich product stream. Thermodynamic equilibrium data for dry autothermal reforming of glycerol was generated for temperature range 600-1000 K, 1 bar pressure, OCGR [feed O2/C (C of glycerol only) ratio] 0.1 to 0.5 and CGR [feed CO2/glycerol ratio] 1 to 5 and analyzed. The objective of the paper is to identify the thermodynamic domain of the process operation, study the variation of product distribution pattern and describe the optimum conditions to maximize yield of the desired product and minimize the undesired product formation. Higher OCGR and higher CGR yielded a syngas ratio (∼ 1), with lower carbon and methane formation, while lower CGR and lower OCGR yielded good hydrogen and total hydrogen, with low water and CO2 production. The best thermoneutral condition for DATR of glycerol operation was seen at a temperature of 926.31 K at 1 bar pressure, OCGR = 0.3 and CGR = 1 that gave 2.67 mol of hydrogen, 4.8 mol of total hydrogen with negligible methane and carbon formations.  相似文献   

20.
Packed-column supercritical extraction (SCE), followed by low-pressure gas stripping, was used to produce a dimer-rich pitch fraction from an oligomeric petroleum pitch, Marathon M-50, of broad molecular weight distribution (MWD). Both solvent-to-pitch ratios (S/P) >5 and a positive retrograde temperature gradient of 380-330 °C at 70 bar were found to reduce significantly the amount of trimer+ oligomers in the overhead product from the SCE column. This monomer- and dimer-rich overhead was subsequently stripped of monomer with gaseous toluene in a second packed column at 380 °C and 1.5 bar to obtain an 80+ mol% dimer product with an overall yield, based on the original feed, of 30%. To our knowledge, this is the first reported fractionation of a dimer-rich cut from a petroleum pitch with a demonstrably low level of both lower and higher mol wt impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号