首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption of VOC on modified activated carbon fiber   总被引:1,自引:0,他引:1  
The surface chemistry of activated carbon fiber (ACF) was modified by CuSO4. The static adsorption capacities of modified ACF for different volatile organic compounds (VOCs) were determined. The result indicates that ACF modified by CuSO4 could get higher adsorption capacities for the vapors of benzene, toluene, methanol and ethanol than the untreated ACF. The increasing extent of the adsorption capacity of modified VACFs is different for various VOCs. The dynamic adsorption behavior of acetone vapor on modified ACF was also studied. The result confirms that the surface modification of ACF with CuSO4 can enhance the affinity between ACF and acetone, which makes it possible to extract acetone of very low concentration from polluted air.  相似文献   

2.
Many of the factors influencing the adsorption of volatile organic compounds by activated carbon fibers (ACFs) have been widely studied. However, most of them were investigated at low concentrations (500 ppm or less) and at low adsorption temperatures (lower than 100 °C). This study was to determine simultaneously the oxidation and adsorption of toluene onto activated carbon fibers (ACFs) at high concentration and high adsorption temperatures. We tested three ACFs, four inlet concentrations of toluene (700, 1,200, 1,600, and 2,000 ppm), and four adsorption temperatures (25, 50, 75, and 200 °C). The composition and morphology of the ACFs were also analyzed using BET, FTIR, EA, and FESEM. The results indicated that the best toluene adsorption capacity was for 569 mg/g ACFs at a toluene concentration of 1,200 ppm and at 25 °C. A combination of low O content and high mesopore volume was desirable for ACFs with a high toluene adsorption capacity at high toluene concentrations. Moreover, the breakthrough time decreased with increasing toluene concentration, and the adsorption capacity of toluene increased significantly when the inlet concentration of toluene increased to 1,200 ppm. The data also indicated that the breakthrough time and the adsorption capacity of toluene decreased with increasing adsorption temperature. The outlet concentration of toluene did not reach 1,200 ppm when adsorption was saturated at 200 °C, as the oxygen functional groups on the ACF surface had reacted with toluene to form other compounds.  相似文献   

3.
Cerium-loaded activated carbon was prepared by classical soaking impregnation method and tested for dibenzothiophene adsorption from model fuels. The new adsorbents showed much better adsorption capacity and selectivity towards DBT than the virgin carbon. The adsorbents were characterized by N2 adsorption, Boehm titration and FTIR. The improved performance is mainly due to changes in surface chemistry. The results show that the performance of activated carbon as desulfurization adsorbents can be considerably enhanced by a simple cerium loading method.  相似文献   

4.
Guoxian Yu  Hui Chen  Zhongnan Zhu 《Carbon》2005,43(11):2285-2294
Desulfurization of diesel fuels with hydrogen peroxide was studied using activated carbons as the catalysts. Adsorption and catalytic properties of activated carbons for dibenzothiophene (DBT) were investigated. The higher the adsorption capacity of the carbons is, the better the catalytic performance in the oxidation of DBT is. The effect of aqueous pH on the catalytic activities of the activated carbons was also investigated. Oxidation of DBT is enhanced when the aqueous pH is less than 2, and addition of formic acid can promote the oxidation. The effect of carbon surface chemistry on DBT adsorption and catalytic activity was also investigated. Adsorption of DBT shows a strong dependence on carboxylic group content. The oxidative removal of DBT increases as the surface carbonyl group content increases. Oxidative desulfurization of a commercial diesel fuel (sulfur content, 800 wt. ppm) with hydrogen peroxide was investigated in the presence of activated carbon and formic acid. Much lower residual sulfur content (142 wt. ppm) was found in the oxidized oil after the oxidation by using the hydrogen peroxide-activated carbon-formic acid system, compared with a hydrogen peroxide-formic acid system. The resulting oil contained 16 wt. ppm of sulfur after activated carbon adsorption without any negative effects in the fuel quality, and 98% of sulfur could be removed from the diesel oil with 96.5% of oil recovery. Activated carbon has high catalytic activity and can be repeatedly used following simple water washing, with little change in catalytic performance after three regeneration cycles.  相似文献   

5.
Nitrogen-doped activated carbon fibers (ACFs) were prepared by chemical vapor deposition using melamine powder and acetonitrile for introducing quaternary nitrogen on the commercial ACFs, subsequently heated at 950 °C and activated by steam. Adsorption experiments of nitrate in aqueous solution were also conducted to evaluate adsorption capacity of the prepared ACFs using ion chromatography. The amount of introduced nitrogen content and nitrogen species on activated carbon fibers was examined by CHN elemental analyzer and X-ray photoelectron spectroscopy, respectively. As a result, adsorption capacity of quaternary nitrogen-doped ACF (ST-ML-AN-ST) was 0.75 mmol/g, indicating ca. two-times higher than that of untreated ACF (0.38 mmol/g). According to the adsorption data, the Langmuir isotherm model was the best fit. The prepared samples were also regenerated using hydrochloric acid. After regeneration, the adsorption capacity of the nitrogen-doped ACF (ST-ML-AN-ST) showed ca. 80% on average, implying that a portion of nitrates was adsorbed on the prepared ACFs irreversibly.  相似文献   

6.
活性炭处理活性艳红X-3B染料废水的静态研究   总被引:1,自引:0,他引:1  
采用活性炭纤维(ACF)、粒状活性炭(GAC)、椰壳活性炭(椰壳AC)分别处理活性艳红X-3B模拟染料废水。实验结果表明,在相同的活性炭用量下,吸附率顺序为:椰壳AC>ACF>GAC;温度10~50℃,吸附效率随温度升高而增大;溶液在弱酸性条件下,3种炭材料均有较好的吸附效果;随着染料溶液浓度的提高,脱色率是下降的;加热和微波均可使GAC和椰壳AC再生,而且再生后的吸附性能均基本可恢复到原来的100%,ACF经微波再生后,吸附量达原来的2.4倍。  相似文献   

7.
The adsorption of polar methy-ethyl-ketone (MEK) and non-polar benzene vapors on viscose rayon-based activated carbon fiber (ACF) was investigated. The pore texture and surface composition of ACF were characterized by nitrogen adsorption at 77 K and X-ray photoelectron spectroscopy (XPS), respectively. Gas adsorption on the samples was measured by the gravimetric method and the Dubinin-Radushkevich (DR) equation was used to fit the experimental adsorption isotherms. The experimental results show that ACF with different pore texture and surface composition exhibited different adsorption and desorption behavior for polar and non-polar vapors. The effect of adsorbate polarity on the adsorption capacity at lower concentrations was more significant in the case of adsorbents with a smaller surface area. It was found that evacuation treatment greatly increased the adsorption rate.  相似文献   

8.
The kinetics of adsorption of benzoyl peroxide from solutions in ethanol and n-hexane on coconut shell activated carbon was studied. It was found that the kinetics of adsorption of benzoyl peroxide is described by a pseudo-first-order rate equation. The adsorption isotherm of benzoyl peroxide at its equilibrium concentrations from 0.07 to 1.25 g/L in solution is adequately described by the Langmuir equation. It was established that, in a solution in ethyl alcohol, the degradation of benzoyl peroxide with the formation of ethyl benzoate occurred along with adsorption.  相似文献   

9.
以石墨片微元构建的多孔碳材料作为活性炭的结构模型,采用巨正则蒙特卡罗方法(GCMC)和分子动力学方法(MD),从分子层面研究甲烷和甲苯在活性炭中的吸附和扩散特性. 结果表明,石墨片微元大小对多孔碳材料吸附甲烷和甲苯有一定影响,37个碳环构成的多孔碳材料是最佳的吸附结构;甲烷气体在活性炭材料中扩散较快,甲苯在活性炭中扩散较慢,随碳环碳原子数增加,气体在多孔碳材料中的自扩散系数逐渐增大;引入基团会使最优密度向高密度方向偏移,用不同基团表面改性的吸附量顺序为羟基>氨基>羧基>未改性,基团引入会改善材料的孔结构,有利于吸附量的增加.  相似文献   

10.
Removal of volatile organic compound by activated carbon fiber   总被引:2,自引:0,他引:2  
Debasish Das 《Carbon》2004,42(14):2949-2962
Experiments were carried out to study adsorption/desorption of volatile organic compound (VOC) on the activated carbon fiber (ACF) under dynamic conditions. The primary objective was to experimentally demonstrate the suitability of ACF in effectively adsorbing VOCs from inert gaseous stream under varying operating conditions, and compare its performance vis-à-vis that of the other commercially available adsorbents, such as granular activated carbon (GAC), silica gel, and zeolites. The adsorption experiments were carried out in a fixed tubular packed bed reactor under various operating conditions including temperature (35-100 °C), gas concentration (2000-10,000 ppm), gas flow rate (0.2-1.0 slpm) and weight of the adsorbent (2-10 g). A mathematical model was developed to predict the VOC breakthrough characteristics on ACF. The model incorporated the effects of the gas-particle film mass transfer resistance, adsorbent pore diffusion and the adsorption/desorption rates within the pore. The experimental data and the corresponding model simulated results were compared and found to be in good agreement. The ACF repeatedly showed a good regeneration capability following desorption by DC electrical heating.  相似文献   

11.
Adsorption kinetics of four volatile organic compounds (VOCs) (acetone, toluene, n-hexane and n-decane) on activated carbon under supercritical carbon dioxide (scCO2) conditions was studied. Breakthrough curve measurements of VOCs in scCO2 were performed with a fixed bed method for activated carbon (ca. mean particles diameter: 100 μm, specific surface area: 1300 m2/g and mean pore diameter: 0.687 nm, respectively). The measured breakthrough curves could be correlated with a kinetic model by using only one fitting parameter (effective diffusion coefficient in pore) within 10% of average relative deviation. The determined effective diffusion coefficient decreased with decreasing temperatures and increasing pressures at all conditions. Additionally, a generalized model of the determined effective diffusion coefficients was developed, and the proposed model could satisfactorily describe temperature and pressure dependence at all VOCs conditions.  相似文献   

12.
An experimental study of the extents and rates of adsorption of several polymers from various solvents onto activated carbon has been carried out. The polymers studied included polystyrene, polybutadiene, butadiene–styrene copolymers and poly(methyl methacrylate). The solvents included toluene, cumene, decalin, 2-pentanone, and methyl ethyl ketone (MEK). Polystyrene is adsorbed from the different solvents in the order MEK, 2-pentanone, cumene, toluene, decalin. The adsorption from toluene, decalin, and cumene is in the order polystyrene, polybutadiene butadiene—styrene copolymer. The fact that the copolymer is adsorbed less than either homopolymer is striking. The variation of molecular weight distribution with extent of adsorption has been studied. It was found that low molecular weight polymer was preferentially adsorbed in the early stages of the experiment, but high molecular weight polymer was adsorbed at longer times. The apparent adsorption rate constants have been evaluated for the various systems and resolved into external mass transfer, internal (intraparticle) mass transfer, and adsorption rate constants. The experimental data have been applied to the prediction of the elution of the polymers from chromatographic columns packed with activated carbon.  相似文献   

13.
By solid‐state 13C‐ and 31P‐NMR, XPS, and FTIR, the chemical structure of activated carbon fiber–P (ACF‐P) and its reaction with phosphoric acid were studied. Even when activated at low temperatures, these fibers developed a graphitelike carbon structure with a certain amount of phenol groups as well as acetal (or methylenedioxy) carbon. As expected, the oxygen‐containing groups were greatly reduced at high activation temperatures. Different from the ACF‐W, metaphosphoric acid (or polyphosphates) and a small amount of phosphorus exist on ACF‐P. The original ACF‐P activated at low temperature contained a lot of phosphoric acid, so it had to be washed with water to expose the large surface area. The washing process can be omitted for ACF‐P activated at high temperature because most phosphorus compounds in fiber have volatilized. The ACF‐P activated at lower temperature possessed a large amount of oxygen‐containing surface groups and had enhanced adsorption ability for polar adsorbates. The remaining of metaphosphoric acid enhanced the adsorption of silver ion. The experimental results showed that the peaks of 31P‐NMR, P2p‐XPS, and FTIR at 1620 cm?1 shifted with the increase of activated temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2253–2261, 2003  相似文献   

14.
以国产聚丙烯腈(PAN)基碳纤维为原料,采用KOH为活化剂制备PAN基活性碳纤维。测定了不同ACF样品的CO2吸附量,并通过氮气吸附、碘吸附以及红外光谱对所得活性碳纤维的比表面积、孔结构及表面官能团进行表征。研究了活化温度、活化时间和表面改性对活性碳纤维CO2吸附量的影响。结果表明,活化温度是影响活性碳纤维CO2吸附量的主要因素。当活化温度为850℃时,所得活性碳纤维BET比表面积为1235m2/g,微孔比表面积为745 m2/g,在吸附温度为273 K、吸附相对压力P/P0为1时,CO2的吸附量达到87.29 mL/g。  相似文献   

15.
采用活性碳纤维(activated carbon fiber,ACF)静态吸附模拟废水中的喹啉,考察了吸附时间、喹啉初始浓度、温度、pH值、有机物等对吸附速率与吸附行为的影响。结果表明,ACF对喹啉的吸附速率快,30 min内基本达到平衡,初始浓度较高时,最终吸附容量较大,达210 mg/g,低温和pH值小于7时,吸附效果较好,苯酚与喹啉产生竞争吸附,配水中的吸附行为能较好的符合Langmuir等温方程,吸附动力学符合准二级动力学模型,热力学参数ΔH0、ΔG0为负值,表明该吸附是一个自发的放热过程。本研究为环境功能材料ACF应用于工业化生产提供了理论依据,有必要在此基础上进行动态吸附实验以及实际焦化废水的吸附处理实验,同时ACF成本高及脱附再生等方面问题还有待进一步深入研究。  相似文献   

16.
Adsorption characteristics according to polarity of acetone and toluene vapors on coconut based activated carbon were investigated by using a fixed bed reactor. Single vapor and binary vapor adsorption of acetone and toluene were conducted. In the single vapor system, the equilibrium adsorption capacity of toluene vapor on activated carbon was five times higher than that of acetone vapor because of polarity difference between adsorbent and adsorbate. The breakthrough curve of acetone vapor in the binary vapor was quite different from that of single acetone vapor. Acetone adsorbed in the binary vapor was substituted with toluene due to the affinity difference during adsorption process and its outlet concentration increased to 1.6 times than inlet concentration. The temperature changes in activated carbon bed during adsorption of acetone vapor and toluene vapor occurred in the time ranges of 10–30 min. The temperature change for acetone vapor adsorption was about 3 °C; however, that for toluene vapor adsorption was increased to 33 °C maximally.  相似文献   

17.
活性炭纤维在化工分离中的应用及研究进展   总被引:5,自引:0,他引:5  
活性碳纤维 (ACF)是一种优于传统粒状活性炭的新型高效吸附材料 ,它具有吸附容量高 ,吸附、脱附速度快 ,低浓度下的吸附性能突出等特点。本文综述了其在化工分离领域如有机和无机废水处理、空气净化、饮用水的净化等方面的应用 ,介绍了ACF的理论研究进展 ,认为ACF的市场前景广阔  相似文献   

18.
Xiaohong Shao  Xuejun Zhang 《Carbon》2007,45(1):188-195
Three activated carbon fibers (ACFs) with different BET specific surface areas (SSAs) were prepared. Experimental characterization and methane adsorption on the ACFs were measured by the intelligent gravimetric analyzer (IGA-003, Hiden) at 258 and 298 K. Correlations proposed between the methane adsorption capacity and SSA indicate that the SSA plays an important role on storage amount at a given temperature. A detailed experimental investigation was focused on the sample ACF3 of the highest SSF of 1511 m2/g at five temperatures, from 258 to 298 K. The temperature dependence for methane adsorption amount on ACF3 at 1.8 MPa is proposed. It shows that temperature is vital to methane storage capacity for ACF3, and adsorption storage at the temperatures below 280 K is recommended for favorite uptakes. To model ACF3, the pores are described as slit-shaped with a pore size distribution that was determined by molecular simulation and the statistics integral equation. Predictions of methane adsorption, carried out at 258 and 298 K and high pressures by molecular simulation, indicate that our sample ACF3 can reach the uptake of 14.99 wt% at 4.0 MPa and 298 K, which is comparable with the best result in the literature.  相似文献   

19.
The adsorption of arsenic from aqueous solution using activated carbon fiber (ACF) was investigated. Several series of experiments were conducted to investigate the effect of operating parameters such as equilibrium time, flow rate, and initial concentration that affect to the adsorption rate. Average removal efficiency was 24% for the initial arsenic concentration of 10 mg/L to 17 mg/L. Breakthrough point in ACF unit reached at 5 hours of the experimental operation for aqueous solution containing arsenic. Adsorption capacity of the filter was found to be 0.18 mg/mg of ACF. With the increase of flow rate there was a slight increase in the removal of arsenic. Field tests from thirty contaminated sites in Sonarang, Bangladesh have shown that the arsenic removal efficiency was only 13.0% in the single ACF unit, while it was increased upto 24.6% in two ACF units in series. Among the several fitting regression curves tested, three dimensional non-linear regressions gave over 90% fitting, while for other linear regression curves it was in the range of 5 to 92% depending upon the various operating parameters. Non-linear models described the relationships of C with C0 and t better than the linear ones, and this model gives a good generalization of the kinetics of arsenic in ACF for the laboratory tested ranges.  相似文献   

20.
Polystyrene-based activated carbon spheres (PACSK) with high surface area were prepared through KOH activation. Effects of the carbonization temperature and the ratio of KOH to carbon spheres (CS) on the textural structure, hardness and yield of the resultant PACSK were studied, and their adsorption to dibenzothiophene (DBT) were investigated. The as-prepared PACSK exhibited a high surface area (up to 2022 m2/g), large total pore volume (≥ 0.78 cm3/g), superior mechanical hardness and high adsorption capacity (ca. 153 mg/g). With the increase of the KOH/CS ratio from 2:1 to 4:1, the surface area, total pore volume, volume of micropores, and volume of mesopores, increase, whereas the volume of small-micropores (< 0.8 nm) decreases from 0.36 to 0.31 cm3/g. The adsorption capacity has a good linear correlation with the volume of small-micropores rather than the surface area. In addition, the large quantity of acidic oxygen-containing groups of PACSK may also be responsible for their higher adsorption capacity and selectivity of DBT. The PACSK saturated by DBT can be regenerated by a washing process in a shaking bath or using ultrasonic with toluene at 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号