首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taro Sonobe 《Fuel》2008,87(3):414-421
The pyrolysis behaviors of several agricultural residues have been investigated by using thermogravimetric analysis. The evolving rates of the gaseous products during the pyrolysis such as H2, CH4, H2O, CO and CO2 were also measured by the TG-MS techniques. Without any assumption and mathematical fitting, we could obtain the very proper kinetic parameters (the distribution curve of activation energy, f(E), and the activation energy dependent frequency factor, k0(E)) of biomass pyrolysis by utilizing the distributed activation energy model (DAEM) proposed by Miura and Maki [Miura K, Maki T. Energ Fuel 1998;12:864]. The peaks of f(E) curve for rice straw, rice husk, corncob and cellulose were found to be 170, 174, 183, and 185 kJ/mol, respectively. The k0 value increased from an order of 1011 to an order of 1018 s−1, while E increased from 120 to 250 kJ/mol. The catalytic effects of alkali and alkaline earth metals during the pyrolysis play a major role in the variation of f(E) curve among the different biomass species.  相似文献   

2.
Song Hu  Andreas Jess  Minhou Xu 《Fuel》2007,86(17-18):2778-2788
The slow pyrolysis of six Chinese biomasses was studied by thermogravimetric experiments. Non-linear square fitting method is used to calculate DTG data. The analysis results show that it is not possible to exactly represent the biomass pyrolysis by a one-step model with different mechanisms. Thus, three-pseudocomponent models were used to simulate the biomass pyrolysis. It was found that the three-pseudocomponent model with n-order kinetics (model II) is more accurate than the model with first-order kinetics (model I). Activation energies of three-pseudocomponents in model II are bigger than the values in model I. It is shown that model II yields the best simulation results, especially with respect to describe accurately the pyrolysis of the first pseudocomponent (hemicellulose) and the last one (lignin). Nevertheless, with regard to a practical utilization, the three-pseudocomponent model with a reaction order of one could be used, because the accuracy to represent biomass pyrolysis is high enough. Unrealistic high values of the reaction order are avoided, and thus this model is more realistic with respect to the chemical interpretation of the reaction order.  相似文献   

3.
Ramin Radmanesh  Christophe Guy 《Fuel》2006,85(9):1211-1220
Thermogravimetry analysis and gas chromatography techniques are used at different heating rates (from 5 to 50 K/min) to map all the products and to develop suitable kinetic models of biomass pyrolysis. A three-independent-parallel-reactions model is used to model kinetic of total devolatilization. This part accounts for the total char yield and devolatilization time. The evolutions of condensable vapors (tar and H2O) and non-condensable gases (H2, CH4, CO and CO2) are also studied using gas chromatography technique. It is shown that the final total yield of gases increases by increasing the heating rate, whereas those of tar decrease by increasing heating rate. A kinetic model was then proposed and the parameters for that were calculated, which can predict the change of the gases yields at different heating rates. The performance of the kinetic models was evaluated for other experimental works available in the literature or by exposing the biomass to different heating program.  相似文献   

4.
Kenneth M. Bryden  Mathew J. Hagge 《Fuel》2003,82(13):1633-1644
A detailed computational model of pyrolysis of a moist, shrinking biomass particle is presented. This model is used to examine the effect of varying the moisture content for a single shrinking biomass particle subjected to a constant external temperature. Particle half-thicknesses ranging from 5 μm to 2 cm, temperatures from 800 to 2000 K, moisture contents from 0 to 30% (dry basis), and shrinkage factors from 1.0 to 0.4 are examined. The impact of moisture content and shrinkage was found to be a function of pyrolysis regime. In general, coupling between moisture content and shrinkage was found to result in longer pyrolysis times than if they were considered separately. Additionally, coupling between moisture content and shrinkage increased tar yield and decreased light hydrocarbon yield compared to considering moisture and shrinkage separately.  相似文献   

5.
A kinetic analysis of the pyrolysis of various types of biomass (trunk, bark, leaf, shell, herbage, food dregs, and polysaccharide) as well as synthetic biomass consisting of cellulose and lignin was performed using thermogravimetric analysis data. The reaction rates of biomass pyrolysis were found to be expressed simply by a single nth-order reaction model. The kinetic parameters (frequency factor k0, activation energy E, and reaction order n) were estimated first by differentiating the thermogravimetric curves and then by the nonlinear estimation method. The rate parameters of the pyrolysis of both 38 biomass samples and 9 synthetic biomass samples were successfully correlated in terms of the solid residue yield ω; charts are presented showing the correlations. Furthermore, a linear correlation was found between ω and the lignin content L in the woody biomass. This allows the kinetic parameters of biomass pyrolysis to be estimated using the value of ω, which is obtained from thermogravimetric measurements or estimated from the value of L for the biomass feedstock.  相似文献   

6.
以竹材、稻壳、木屑为原料,通过常规热解结合快速热解研究生物质热解特性。结果表明,生物质常规热解的液体得率较低,相比而言竹材最高,稻壳最低,且热解温度是影响竹材和木屑热解的主要因素,其液体得率随温度的升高呈先增后减的变化规律;快速热解方面,利用居里点裂解仪和GC—MS在线分析竹材热解的液相组成,其组成以糠醛和酚类物质为主,它们分别来源于纤维素、半纤维素和木质素的热解。  相似文献   

7.
Catalytic pyrolysis of biomass for biofuels production   总被引:3,自引:0,他引:3  
Fast pyrolysis bio-oils currently produced in demonstration and semi-commercial plants have potential as a fuel for stationary power production using boilers or turbines but they require significant modification to become an acceptable transportation fuel. Catalytic upgrading of pyrolysis vapors using zeolites is a potentially promising method for removing oxygen from organic compounds and converting them to hydrocarbons. This work evaluated a set of commercial and laboratory-synthesized catalysts for their hydrocarbon production performance via the pyrolysis/catalytic cracking route. Three types of biomass feedstocks; cellulose, lignin, and wood were pyrolyzed (batch experiments) in quartz boats in physical contact with the catalysts at temperature ranging from 400 °C to 600 °C and catalyst-to-biomass ratios of 5-10 by weight. Molecular-beam mass spectrometry (MBMS) was used to analyze the product vapor and gas composition. The highest yield of hydrocarbons (approximately 16 wt.%, including 3.5 wt.% of toluene) was achieved using nickel, cobalt, iron, and gallium-substituted ZSM-5. Tests performed using a semi-continuous flow reactor allowed us to observe the change in the composition of the volatiles produced by the pyrolysis/catalytic vapor cracking reactions as a function of the catalyst time-on-stream. The deoxygenation activity decreased with time because of coke deposits formed on the catalyst.  相似文献   

8.
Yo-Ping G. Wu  Ya-Fen Lin  Chung-Lei Huang 《Fuel》2004,83(16):2237-2248
Experiments on pyrolysis of C2Cl4 with hydrogen in argon bath gas (C2Cl4: H2: AR=0.5:7:92.5) were performed in a laboratory scale flow reactor, to determine reaction paths and kinetic parameters, plus to observe hydrogen as a source to convert chlorocarbons into hydrocarbons and HCl. The reaction was carried out at 1 atmosphere total pressure in the tubular flow reactor, over temperature ranges from 575 to 850 °C, with average residence times in the range of 0.3 to 1.2 s. The major reaction products were C2HCl3, CH2CCl2, C2H6, C2H4 and HCl. Trace intermediates including CH4, C2H2, C3H6, C3H4, C4H8, C4H6, C4H4, C2H3Cl, C2HCl, trans-CHClCHCl, cis-CHClCHCl C2Cl2 and aromatic compounds were found. The equation for overall loss of C2Cl4 (k (s−1)) was 1.35×106exp(−27055/RT). This study shows that C2H4 became the major product for reaction temperatures higher than 700 °C, and became one of the final products together with HCl.A detailed kinetic mechanism consisting of 202 elementary reactions with 59 species was developed to model the results obtained from the experiments. Sensitivity analyses were performed to rank the significance of each reaction in the mechanism. Modeling and sensitivity analysis revealed that C2Cl4+H→C2HCl3+Cl, C2Cl4+H→C2Cl3+Cl, and C2Cl4→C2Cl3+Cl are the primary reactions for the decomposition of C2Cl4.  相似文献   

9.
Kinetic modeling of the pyrolysis of coal, biomass and waste fuels is presented using a power-law model in terms of multiple parallel reactions. The behaviour of the overall conversion rate of the pyrolysis products is derived from the summation of each reaction's conversion rate, while the exponential integral for the computation of individual conversion is evaluated by Hastings rational approximation. Global optimization techniques and the Global Optimization Toolbox for Maple were used in order to minimize globally the sum of squares of errors. Comparison with literature results derived using local scope search methods supports the assumption that the problem is non-convex, thus necessitating the use of global optimization, which leads to a very good agreement between the computational and experimental values of the overall conversion rate vs. temperature derived from a non-isothermal thermogravimetric analyzer.  相似文献   

10.
A novel test method for catalysts in the treatment of biomass pyrolysis oil   总被引:1,自引:0,他引:1  
A novel microscale test method was developed for testing catalysts. A pyrolyser connected to a gas chromatograph was used for pyrolysing the biomass sample and for leading the pyrolysis vapours through the catalyst for instant analysis. The injection port of the gas chromatograph was used as a fixed-bed catalyst reactor. Detection of reaction products was carried out with an atomic emission detector to quantify the various elements or with a mass selective detector to identify the compounds.

The test method was applied to treating pyrolysis vapours of Scots pine sawdust with ZnO, MgO, dolomite and limestone. Mass balances for carbon and hydrogen were determined with and without the catalyst. The carbon yields in liquid fraction decreased with all the catalysts studied. The highest yields were obtained with ZnO. Product distribution in pyrolysis vapours was rather similar with ZnO or without any catalyst. With MgO, dolomite and limestone, the compounds of pyrolysis vapours comprised mainly gases, water and degradation products of polysaccharides as well as some aromatic hydrocarbons.  相似文献   


11.
A microalga, Spirulina, was partially oxidized at temperatures of 850°C, 950°C, and 1000°C, and the composition of produced gas was determined in order to evaluate the theoretical yield of methanol from the gas. The gas composition depended on the temperature, and the gasification at 1000°C gave the highest theoretical yield of 0.64 g methanol from 1 g of the biomass. Based on this yield, the total energy requirement for the whole process including the microalgal biomass production and conversion into methanol was obtained. Energy balance, which was defined as the ratio of the energy of methanol produced to the total required energy, was 1.1, which indicates that this process was plausible as an energy producing process. The greater part of the total required energy, almost four-fifth, was consumed with the microalgal biomass production, suggesting that more efficient production of microalgal biomass might greatly improve its energy balance.  相似文献   

12.
Effects of particle size on the fast pyrolysis of oil mallee woody biomass   总被引:1,自引:0,他引:1  
This study aims to investigate the effects of biomass particle size (0.18-5.6 mm) on the yield and composition of bio-oil from the pyrolysis of Australian oil mallee woody biomass in a fluidised-bed reactor at 500 °C. The yield of bio-oil decreased as the average biomass particle size was increased from 0.3 to about 1.5 mm. Further increases in biomass particle size did not result in any further decreases in the bio-oil yield. These results are mainly due to the impact of particle size in the production of lignin-derived compounds. Possible inter-particle interactions between bio-oil vapour and char particles or homogeneous reactions in vapour phases were not responsible for the decreases in the bio-oil yield. The bio-oil samples were characterised with thermogravimetric analysis, UV-fluorescence spectroscopy, Karl-Fischer titration as well as precipitation in cold water. It was found that the yields of light bio-oil fractions increased and those of heavy bio-oil fractions decreased with increasing biomass particle size. The formation of pyrolytic water at low temperatures (<500 °C) is not greatly affected by temperature or particle size. It is believed that decreased heating rates experienced by large particles are a major factor responsible for the lower bio-oil yields from large particles and for the changes in the overall composition of resulting oils. Changes in biomass cell structure during grinding may also influence the yield and composition of bio-oil.  相似文献   

13.
Effects of particle shape and size on devolatilization of biomass particle   总被引:1,自引:0,他引:1  
Hong Lu 《Fuel》2010,89(5):1156-1168
Experimental and theoretical investigations indicate particle shape and size influence biomass particle dynamics, including drying, heating rate, and reaction rate. Experimental samples include disc/flake-like, cylindrical/cylinder-like, and equant (nearly spherical) shapes of wood particles with similar particle masses and volumes but different surface areas. Small samples (320 μm) passed through a laboratory entrained-flow reactor in a nitrogen atmosphere and a maximum reactor wall temperature of 1600 K. Large samples were suspended in the center of a single-particle reactor. Experimental data indicate that equant particles react more slowly than the other shapes, with the difference becoming more significant as particle mass or aspect ratio increases and reaching a factor of two or more for particles with sizes over 10 mm. A one-dimensional, time-dependent particle model simulates the rapid pyrolysis process of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model simulates the devolatilization process of biomass particles of any shape. Model simulations of the three shapes show satisfactory agreement with the experimental data. Model predictions show that both particle shape and size affect the product yield distribution. Near-spherical particles exhibit lower volatile and higher tar yields relative to aspherical particles with the same mass under similar conditions. Volatile yields decrease with increasing particle size for particles of all shapes. Assuming spherical or isothermal conditions for biomass particles leads to large errors at most biomass particle sizes of practical interest.  相似文献   

14.
The technical feasibility of biomass gasification for hydrogen production   总被引:4,自引:0,他引:4  
Biomass gasification for energy or hydrogen production is a field in continuous evolution, due to the fact that biomass is a renewable and CO2 neutral source. The ability to produce biomass-derived vehicle fuel on a large scale will help to reduce greenhouse gas and pollution, increase the security of European energy supplies, and enhance the use of renewable energy. The Värnamo Biomass Gassification Centre in Sweden is a unique plant and an important site for the development of innovative technologies for biomass transformation. At the moment, the Värnamo plant is the heart of the CHRISGAS European project, that aims to convert the produced gas for further upgrading to liquid fuels as dimethyl ether (DME), methanol or Fischer–Tropsch (F–T) derived diesel. The present work is an attempt to highlight the conditions for the reforming unit and the problems related to working with streams having high contents of sulphur and alkali metals.  相似文献   

15.
D.K. Shen  K.H. Luo  M.X. Fang 《Fuel》2009,88(6):1024-1030
The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.  相似文献   

16.
The pyrolysis of pure biomass, high density polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET), plastic mixtures [HDPE+PP+PET (1: 1: 1)], and biomass/plastic mixture (9: 1, 3: 1, 1: 1, 1: 3 and 1: 9) were investigated by using a thermogravimetric analyzer under a heating rate at 10 °C/min from room temperature to 800 °C. Paper was selected as the biomass sample. Results obtained from this comprehensive investigation indicated that biomass was decomposed mainly in the temperature range of 290–420 °C, whereas thermal degradation temperature of plastic mixture is 390–550 °C. The percentage weight loss difference (W) between experimental and theoretical ones was calculated, which reached a significantly high value of (−)15 to (−)50% at around 450 °C in various blend materials. These thermogravimetric results indicate the presence of significant interaction and synergistic effect between biomass and plastic mixtures during their co-pyrolysis at the high temperature region. With increase in the amount of plastic mixture in blend material, the char production has diminished at final pyrolysis temperature range. Additionally, a kinetic analysis was performed to fit with TGA data, the entire pyrolysis processes being considered as one or two consecutive first order reactions.  相似文献   

17.
The influence of temperature on the compounds existing in liquid products obtained from biomass samples via pyrolysis were examined in relation to the yield and composition of the product bio-oils. The product liquids were analysed by a gas chromatography mass spectrometry combined system. The bio-oils were composed of a range of cyclopentanone, methoxyphenol, acetic acid, methanol, acetone, furfural, phenol, formic acid, levoglucosan, guaiacol and their alkylated phenol derivatives. Thermal depolymerization and decomposition of biomass structural components, such as cellulose, hemicelluloses, lignin form liquids and gas products as well as a solid residue of charcoal. The structural components of the biomass samples mainly affect the pyrolytic degradation products. A reaction mechanism is proposed which describes a possible reaction route for the formation of the characteristic compounds found in the oils. The supercritical water extraction and liquefaction partial reactions also occur during the pyrolysis. Acetic acid is formed in the thermal decomposition of all three main components of biomass. In the pyrolysis reactions of biomass: water is formed by dehydration; acetic acid comes from the elimination of acetyl groups originally linked to the xylose unit; furfural is formed by dehydration of the xylose unit; formic acid proceeds from carboxylic groups of uronic acid; and methanol arises from methoxyl groups of uronic acid  相似文献   

18.
The present work studies the combustion of biomass syngas to characterize the NO-reduction by tar, benzene being selected as the representative model tar component. Experiments were carried out in a tubular flow reactor at atmospheric pressure and at different operating conditions i.e. an equivalence ratio of 0.5 to 2.5, temperatures between 1173 K and 1673 K and a reaction residence time of 50 to 100 ms. Kinetic parameters were determined from the experimental results. A simplified scheme of NO-reduction by benzene was presented and the effects of operating variables were concluded. The NO conversion is favored by an oxygen-rich condition, and the reduction efficiency falls with the rise of equivalence ratio, especially in the range of 0.5-1.0. Although high temperature enhances the reduction reactions, soot formation at high temperatures (1573 K, 1673 K) will seriously hinder the reduction of NO, which should be prevented. The ideal temperature is about 1473 K. 50 ms is found to be an insufficient residence time for the reduction. An increased contact time is of higher benefit at 1673 K where the heterogeneous reactions between NO and graphitized heavy hydrocarbons have a lower reaction rate. High pre-exponential factors and low activation energies are achieved under oxygen-rich conditions.  相似文献   

19.
The structural evolution of the chars from pyrolysis of biomass components(cellulose, hemicellulose and lignin)in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of ΔH/C/ΔO/Cfor the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface morphologies of the chars.  相似文献   

20.
Daniel M. Keown  Chun-Zhu Li 《Fuel》2008,87(7):1187-1194
An important feature of a fluidised-bed gasifier is the continuous contact between volatiles and char. The aim of this study is to experimentally investigate the effects of volatile-char interactions on the volatilisation of AAEM species during pyrolysis of two sugarcane industry wastes, bagasse and cane trash. A two-stage quartz fluidised-bed/fixed-bed reactor was used for this fundamental study. Our results indicate that the volatile-char interactions could lead to the additional volatilisation of alkali and alkaline earth metallic (AAEM) species, particularly if the volatile-char interactions have resulted in additional char weight losses. The monovalent Na and K behaved differently from the divalent Mg and Ca in biomass. Our results provide circumstantial but clear evidence that the AAEM species in biomass could behave distinctly differently from those in brown coal, largely due to the differences in the structure and composition between biomass and coal. The development of biomass gasification technologies must consider the special thermochemical characteristics of biomass. Furthermore, even the bagasse and cane trash grown in the same area behave drastically differently, at least partly due to the different microstructures of bagasse and cane trash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号