首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
运用热线风速仪和CFD软件对小喷嘴间距下两喷嘴对置撞击流时均流场进行了实验研究和数值模拟,并和文献中的实验结果和近似解析式进行了比较。研究结果表明:由于边界层存在,单股喷嘴出口速度分布为“礼帽”形状分布;在L<2D(L为喷嘴间距,D为喷嘴直径)时,喷嘴出口速度剖面出现中间低、两边高的“双峰”形状, L=2D时,“双峰”形状消失。随着喷嘴间距的增大,相同气速比导致的撞击面驻点的偏移量增大。相同气速比下,喷嘴出口为“礼帽”分布时驻点的偏移量比均匀分布时大。文献中的撞击流流场的近似解析式对喷嘴出口速度分布为均匀分布有很好的精度,当喷嘴出口速度为“礼帽”分布时,文献中近似解析式的预报精度变差。  相似文献   

2.
The present study focuses on understanding the spray characteristics of a turbulent gas‐liquid jet (Reliq = 24,000). Air and water are used as the test fluids. The angles of injection of the two phases upstream of the nozzle are varied (θ = 20°, 45° and 90°) and the effect of carrier gas on the droplet characteristics is are also investigated. The droplet size and velocity are non‐intrusively measured using a Phase‐Doppler Particle Analyzer (PDPA). In some respects, the characteristics of the present two‐phase jet are similar to those noticed in previous studies, while revealing some important differences. The centreline mean droplet velocities (15 ~ 20 m/s) increase in the initial region of the jet, attain a maximum and then decrease at larger distances from the nozzle exit. Most of the entrainment occurs at the tip of the nozzle and the jet expansion rate decreases significantly at distances where the spray velocity profiles become self‐similar. A Lorentz‐type fit has been used to model the normalized radial velocity profiles. The results indicate that the test configuration with θ = 45° may be beneficial for the scenario discussed.  相似文献   

3.
4.
A. J. Yule  S. M. Aval 《Fuel》1989,68(12):1558-1564
The spray pulses produced by a single hole diesel injector were investigated and the cyclic variations, from pulse to pulse, of spray penetration rate were quantified. These variations were found to be significant, with a 10% standard deviation of spray tip penetration velocity, at any downstream position, being typical. Cyclic variations of the nozzle exit velocity, due to the characteristics of the internal flow in the nozzle and the pump, were also investigated. These variations have a standard deviation < 2%. From these and other data it was concluded that the principal causes of cyclic variations are rooted in a lack of repetition of the atomization process, from pulse to pulse. This variation in the atomization or break-up process is a natural phenomenon although nozzle turbulence may increase the effect. The influences of these variations on engine performance and their control are discussed.  相似文献   

5.
设计搭建了有限截面通道顺流喷雾掺混实验台,在横截面为70 mm×70 mm的透明方形掺混段内,将室温水经喷嘴雾化后顺流掺入不同流速的室温空气。实验中,喷水压力为0.1~1.5 MPa,风速为14.6~46.2 m?s-1。分别采用高速摄影和马尔文粒度仪对该雾羽的速度场和初始粒径等动力学特征开展了实验研究。结果指出:掺混雾羽的径向速度及喷射轴线附近的轴向速度主要受制于喷水压力;而雾羽两翼处的轴向速度主要受风速影响。定义轴向平均速度为雾羽轴向特征速度,该平均速度随喷水压力或喷射距离的增大而增大;在喷水压力小时,风速的增大可使轴向平均速度随喷射距离增大的速率提高;在喷水压力高时则反之。掺混雾羽的初始粒径随喷水压力的减小或喷嘴出口处气液相对速度的增大而减小。最后,根据实验结果拟合了轴向平均速度和初始粒径的实验关联式,其计算值与实验值吻合良好。  相似文献   

6.
The results of an experimental study on compressible turbulent wall jets resulting from a normally impinging round jet are presented. A finite difference technique was used for the calculation of velocity and temperature profiles. The eddy transfer coefficients used were functions of the distance from the plate throughout the flow field of the wall jet. The nozzle exit Mach number ranged up to 0.85. The nozzle exit temperature to the ambient temperature ratio ranged up to 2.92. The applicability of the calculational method has been thoroughly checked for a region of flow extending up to 12 nozzle diameters from the axis of symmetry. Using the empirical eddy transfer coefficients presented in this paper only starting profiles are needed to generate the solution for any point in the wall jet flow field which is described by a system of parabolic (boundary layer) equations.  相似文献   

7.
对一种基于成像的激光相关测速技术进行了理论和实验研究。利用光散射理论模拟了成像测量系统对单个颗粒的光信号响应特点,分析了颗粒粒径和探头直径对信号及其频谱的影响,研究了测量体在光轴方向的有效长度。针对信号特点,研究了信号处理参数,分析了分段相关性计算中窗口宽度对计算结果的影响及其选择依据,并对窗函数和信号预平移等优化方法进行了研究。成功地对一脉冲喷雾爆破区高浓度流场进行了测试,获得了不同脉冲宽度下喷雾速度变化规律和轴向径向分布,测试结果与文献报道结果基本吻合,表明基于成像的相关测速系统可以很好地应用于喷嘴出口附近高浓度流场的测试。  相似文献   

8.
Computational fluid dynamics (CFD) models based on the turbulent mixture multiphase model were applied to consider the effect of cavitation on the spray of diesel fuel. The effects of injection pressure and length‐to‐width (L/W) ratio on the velocity distribution, cavitation number, discharged coefficient, and nozzle exit velocity were investigated and the performance of the model was compared with the experimental data. The results indicate that the cavitation generated in the nozzle has a strong impact on the fuel injection and spray quality, whereas the L/W ratio is a highly effective parameter for cavitation behavior. In addition, by increasing the L/W ratio, the range of cavitation number, wall friction, and flow resistance increase but in the cavitation region the velocity profile in radial and axial directions, spray cone angle, nozzle exit velocity, and the discharged coefficient decrease.  相似文献   

9.
利用相位多普勒粒度分析仪(PDA)实验台测量了双流体喷嘴出口速度与粒径分布,利用得到的速度与粒径数据对江苏某生物质电厂进行小水量脱硫废水蒸发的数值模拟,着重研究了液滴粒径以及烟气中水蒸气的体积分数对液滴蒸发过程的影响。PDA实验结果表明,该双流体喷嘴在特定气液比条件下出口粒径均小于100μm。应用离散相模型与随机轨道模型,利用Rosin-Rammler分布模拟喷雾液滴分布范围(0~100μm)。模拟结果表明,粒径低于100μm的液滴能够完全蒸发,液滴粒径越小,完全蒸发时间越短,液滴经历的平稳吸热时间越短。随着粒径的增加,液滴完全蒸发时间增幅变大。随着烟气中水蒸气体积分数增加,液滴蒸发速率变缓,液滴开始蒸发的时间延长,且体积分数越大,出口未蒸发完全的液滴直径越大,但出口液滴粒径增大的幅度在减小。  相似文献   

10.
The fluid sheet thickness and velocity at the tip of a spray nozzle have previously been identified as being important to the ultimate droplet size distribution. In this investigation both the fluid sheet thickness and the velocity of the top surface just beyond the rim of a splashplate nozzle have been measured as functions of nozzle exit velocity and fluid viscosity. Measurements were made on two Babcock & Wilcox Co. splashplate nozzles, a 12-49 and a 15-52, specifically designed for black liquor, a by-product of wood pulping. Comparisons of the ratio of the sheet velocity to the nozzle velocity are shown to be very similar to previous data for the ratio of droplet velocity to nozzle velocity. Likewise, the dependence of the sheet thickness on nozzle exit velocity closely matches the previously measured dependence of the ultimate median droplet size on nozzle exit velocity. Both of these results are consistent with current theories of droplet formation mechanisms. Analysis of continuity and viscous drag on the splashplate are used to develop correlation equations for the data  相似文献   

11.
Ming Jia  Hong Liu  Tianyou Wang 《Fuel》2011,90(8):2652-2661
The conical-spray injector is capable of achieving lean mixture with high homogeneity in the cylinder for diesel Premixed charge compression ignition (PCCI) engine with advanced injection timing. To better understand the cavitating flow inside the conical-spray injector, numerical simulations have been conducted by using a mixture multiphase model and a full cavitation model in this study. The results indicate that the cavitation evolution significantly affects the liquid sheet thickness and velocity at nozzle exit, which further change the spray angle and droplet Sauter mean diameter (SMD) dramatically. Based on the cavitation distribution inside the nozzle, the cavitating flow inside the conical-spray nozzle can be classified into four regimes with no cavitation, cavitation inception at inlet, developing cavitation at nozzle exit and super cavitation respectively. The extension of cavitation to nozzle exit in the super cavitation regime significantly improves the fuel atomization by increasing the injection velocity and decreasing the thickness of the liquid sheet. A cavitation map for the conical-spray injector has been developed by sweeping the ambient pressure and injection pressure simultaneously. It is found that the phenomenon of super cavitation only occurs in a narrow region where ambient pressure is very low. Therefore, the start of injection timing should be kept well before top dead center (TDC) to ensure the occurrence of super cavitation inside the nozzle in order to provide more homogeneous fuel/air mixture for diesel PCCI engines.  相似文献   

12.
The feasibility of using Rash photolysis to measure jet velocity profiles was investigated in the region near the nozzle exit for xylene jets injected vertically into a mutually saturated stationary immiscible water phase. Dye trace measurements obtained from high speed motion pictures were optically corrected, and velocity profiles were obtained by a streamline generation mass balance technique. The standard deviation in axial velocities was less than 8%. Profiles close to the nozzle exit showed good agreement with the fully developed parabolic profile within the nozzle, and downstream profiles were similar to those predicted by existing approximate theories.  相似文献   

13.
To gain an insight into the mechanisms of flash-boiling atomization, heated water was injected from a single-hole orifice into heated air (steady injections, liquid pressure 697 kPa, air pressure ambient, test temperatures from 300 to 426 K, orifice diameter 0.34 mm, length 1.37 mm). The breakup regime of interest in the study was that where the spray divergence starts at the nozzle exit. Short-duration backlit photographs and laser diffraction dropsize measurements showed that these flashing jets comprise an inner intact core which is surrounded by the diverging fine spray. These details about the spray structure are not visible in conventional photographs of flashing sprays that use scattered light illumination. The present results cast doubt on a previously proposed theory of flash-boiling atomization that attributes the divergence of the spray cone to the expansion processes that occur in an underex-panded compressible flow, since that theory implies that the liquid is already atomized upon leaving the nozzle. Instead, the photographs show that drops are expelled from the unbroken liquid jet starting at the nozzle exit (presumably by rapid vapor bubble growth within the jet). The core region remains intact for some distance downstream of the nozzle exit, and its breakup eventually produces relatively large drops. As the liquid temperature approaches boiling, the intact length and the core drop size decrease. Thus operation close to boiling is desirable for effective atomization. However, the nozzle mass flow rate decreases and practical difficulties are found (owing to “vapor-lock”) as the liquid is heated near boiling.  相似文献   

14.
Sungwook Park  Rolf D. Reitz  Junghwan Kim 《Fuel》2011,90(11):3259-3267
This paper describes the combustion and emission characteristics of converging group-hole nozzles and compares the results to those of a single hole nozzle with the same overall nozzle exit hole area. Engine experiments were performed using a single-cylinder diesel engine operating under overall lean conditions (i.e., equivalence ratio 0.45). The considered nozzle configurations in the experiments included a converging group-hole nozzle (cGHN) with 3° converging angle, 0.090 mm hole diameter, and a single hole nozzle (SHN) of 0.128 mm hole diameter. The CFD calculations used the KIVA engine simulation code integrated with a Gasjet superposition model. Using the validated calculation models, the test conditions were also expanded to consider wider converging angle cGHNs (up to 12°). The results show that the evaporation of sprays from the cGHN-3° nozzle is more delayed than that of the SHN case and the cGHNs entrain more ambient gas due to smaller droplet sizes in the outer spray periphery. In addition, an increase in the converging angle of the cGHNs promotes fuel evaporation and produces a more homogeneous fuel–air mixture.  相似文献   

15.
S. Som  D.E. Longman  A.I. Ramírez  S.K. Aggarwal 《Fuel》2010,89(12):4014-4024
Performance and emission characteristics of compression ignition engines depend strongly on inner nozzle flow and spray behavior. These processes control the fuel air mixing, which in turn is critical for the combustion process. The differences in the physical properties of petrodiesel and biodiesel are expected to significantly alter the inner nozzle flow and spray structure and, thus, the performance and emission characteristics of the engine. In this study, the inner nozzle flow dynamics of these fuels are characterized by using the mixture-based cavitation model in FLUENT v6.3. Because of its lower vapor pressure, biodiesel was observed to cavitate less than petrodiesel. Higher viscosity of biodiesel resulted in loss of flow efficiency and reduction in injection velocity. Turbulence levels at the nozzle orifice exit were also lower for biodiesel. Using the recently developed KH-ACT model, which incorporates the effects of cavitation and turbulence in addition to aerodynamic breakup, the inner nozzle flow simulations are coupled with the spray simulations in a “quasi-dynamic” fashion. Thus, the influence of inner nozzle flow differences on spray development of these fuels could be captured, in addition to the effects of their physical properties. Spray penetration was marginally higher for biodiesel, while cone angle was lower, which was attributed to its poor atomization characteristics. The computed liquid lengths of petrodiesel and biodiesel were compared with data from Sandia National Laboratories. Liquid lengths were higher for biodiesel due to its higher boiling temperature and heat of vaporization. Though the simulations captured this trend well, the liquid lengths were underpredicted, which was attributed to uncertainty about the properties of biodiesel used in the experiments. Parametric studies were performed to determine a single parameter that could be used to account for the observed differences in the fuel injection and spray behavior of petrodiesel and biodiesel; fuel temperature seems to be the best parameter to tune.  相似文献   

16.
The velocity and concentration distributions for an axisymmetric air jet containing sand particles are determined in the fully developed region. Similarity of the profiles is seen beyond 40 nozzle radii downstream from the jet exit and entrainment is gradually suppressed with increase in the initial particle concentration.  相似文献   

17.
Seoksu Moon  Yuhei Matsumoto  Jian Gao 《Fuel》2010,89(11):3287-57
In this study, gas entrainment characteristics of a diesel spray injected by a group of closely spaced two-orifices (group-hole nozzle) were investigated. Both free and wall-impinging sprays were considered. The gas entrainment characteristics of the group-hole nozzle spray were compared to those of single-hole nozzle sprays: one has the same total hole area with the group-hole nozzle, and the other has the same hole diameter. The gas entrainment characteristics of diesel sprays were investigated using a particle image velocitmetry technique coupled with a laser induced fluorescence technique (LIF-PIV technique).The spray tip penetration of the group-hole nozzle was the shortest among the applied nozzles in a free spray condition, while it was the longest in a wall-impinging condition. In the free spray condition, the gas entrainment of the spray was enhanced by the group-hole nozzle due to extensive momentum exchange with surrounding gas and superposed gas entrainment motion of the two-jets injected by the group-hole nozzle. After wall-impingement, the group-hole nozzle spray showed a stronger wall-jet vortex and increased gas entrainment compared to the single-hole nozzle sprays due to enhanced spray/wall interaction caused by the momentum interaction of the two-jets from the group-hole nozzle. Asymmetric shape of the group-hole nozzle spray resulted in an asymmetric gas velocity distribution of the spray both in the free and wall-impinging conditions.  相似文献   

18.
An experimental investigation on the stability of a swirling non-premixed methane flame is reported in this paper. Methane gas is supplied through a central nozzle, and combustion (co-flow) air is supplied through an annulus surrounding the nozzle. Two main parameters were varied independently, which are the nozzle geometry and swirl strength; however the exit velocity of the central (fuel nozzle) jet and co-airflow were also varied to provide a wide range of test conditions. Two nozzles were tested: a contracted circular (referred to hereafter as CCN) and a rectangular (referred to hereafter as RN), which have similar equivalent diameter, De (defined as the diameter of a round slot having the same exit area as the nozzle geometry). The contracted circular nozzle has a diameter of 4.82 mm, and the rectangular nozzle has a diameter of 4.71 with an aspect ratio of 2:1. The swirl strength of the co-flow was varied by changing the vanes’ angle. The main results obtained from this study show that the rectangular nozzle exhibits higher entrainment and jet spreading rates compared with its CCN counterpart. In addition, the results revealed that increasing the swirl strength creates a flow recirculation zone which is larger with the RN compared with that of the corresponding CCN. These flow features associated with the RN lead to an enhanced mixing which consequently promotes better flame stability compared with its CCN counterpart.  相似文献   

19.
J.M. Desantes  J. De la Morena 《Fuel》2010,89(10):3033-3041
In this paper, a special technique for visualizing the first 1.5 mm of the spray has been applied to examine the link between cavitation phenomenon inside the nozzle and spray behavior in the near-nozzle field. For this purpose, a Diesel axi-symmetric nozzle has been analyzed. Firstly, the nozzle has been geometrically and hydraulically characterized. Mass flow measurements at stationary conditions have allowed the detection of the pressure conditions for mass flow choking, usually related with cavitation inception in the literature. Nevertheless, with the objective to get a deeper knowledge of cavitation phenomenon, near-nozzle field visualization technique has been used to detect cavitation bubbles injected in a chamber pressurized with liquid fuel. Using backlight illumination, the differences in terms of density and refractive index have allowed the distinction between vapour and liquid fuel phases. From these visualization results, two important conclusions can be established: on the one hand, cavitation bubbles have been detected at the nozzle exit for pressure drop conditions at which mass flow was not choked yet. On the other hand, it could be seen that the jet formed by cavitation bubbles spread as pressure drop conditions became stronger. Finally, spray visualization in a nitrogen pressurized chamber has been developed at stationary conditions. In order to analyze cavitation influence on spray characteristics, pressure drop has been modified near the values at which cavitation bubbles have been detected out of the nozzle. Two different test strategies have been used for this purpose: fixing injection pressure, which implied a change in chamber density for each test point, or fixing chamber pressure. Both kinds of measurements revealed a noticeable increment of spray cone angle and spray contour irregularities related with the presence of cavitation bubbles at the orifice outlet. This fact can be assumed as an indicator of atomization improvement induced by the collapse of cavitation bubbles at the nozzle exit.  相似文献   

20.
This article presents results from a numerical study of pulsating jet impingement heat transfer. The motivation is to seek conditions offering a significant enhancement compared to steady flow impingement drying. The CFD software package FLUENT was used for simulating slot-type pulsating jet impingement flows with confinement. The parameter study included velocity amplitude ratio, mean jet velocity, and pulsation frequency. The distance from nozzle exit to surface was three times the hydraulic diameter of the nozzle. The Reynolds number based on the nozzle hydraulic diameter and jet temperature was 2,460 with a mean jet velocity of 30 m/s, which is the base case of the numerical experiments. Results showed that time-averaged surface heat transfer increased with increasing velocity amplitude for the same mean jet velocity. Large velocity amplitudes helped enhance heat transfer by two mechanisms: high jet velocity during the positive cycle and strong recirculating flows during the negative cycle. For the cases with different mean jet velocities but the same maximum velocity, time-averaged surface heat flux decreased with decreasing mean jet velocity. As for the effects of pulsation frequency, with high-velocity amplitude ratio, time-averaged surface heat fluxes were at the same level regardless of frequency. However, at low-velocity amplitude ratio, high frequency caused stronger recirculating flows resulting in greater heat transfer compared to the cases with a lower frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号