首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

2.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

3.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

4.
Bai-Fu Lin  Dao-Yi Huang 《Fuel》2009,88(9):1779-1785
Vegetable oil methyl ester (VOME) is produced through the transesterification of vegetable oil and can be used as biodiesel in diesel engines as a renewable, nontoxic, and potentially environmentally friendly fossil fuel alternative in light of growing concerns regarding global warming and increasing oil prices. This study used VOME fuels produced from eight commonly seen oil bases to conduct a series of engine tests to investigate the effects of VOME on the engine performance, exhaust emissions, and combustion characteristics. The experimental results showed that using VOME in an unmodified direct injection (DI) diesel engine yielded a higher brake specific fuel consumption (BSFC) due to the VOME fuel’s lower calorific value. The high cetane number of VOME also imparted a better ignition quality and the high intrinsic oxygen content advanced the combustion process. The earlier start of combustion and the rapid combustion rate led to a drastic increase in the heat release rate (HRR) and the in-cylinder combustion pressure (ICCP) during the premixed combustion phase. A higher combustion rate resulted in higher peaks of HRR and ICCP as well as near the top dead center (TDC) position. Thus, it was found that a diesel engine fueled with VOME could potentially produce the same engine power as one fueled with petroleum diesel (PD), but with a reduction in the exhaust gas temperature (EGT), smoke and total hydrocarbon (THC) emissions, albeit with a slight increase in nitrogen oxides (NOx) emissions. In addition, the VOME which possesses shorter carbon chains, more saturated bonds, and a higher oxygen content also yields a lower EGT as well as reduced smoke, NOx, and THC emissions. However, this is obtained at the detriment of an increased BSFC.  相似文献   

5.
In this study, the effect of injection timing and EGR rate on the combustion and emissions of a Ford Lion V6 split injection strategy direct injection diesel engine has been experimentally investigated by using neat biodiesel produced from soybean oil. The results showed that, with the increasing of EGR rate, the brake specific fuel combustion (BSFC) and soot emission were slightly increased, and nitrogen oxide (NOx) emission was evidently decreased. Under higher EGR rate, the peak pressure was slightly lower, and the peak heat release rate kept almost identical at lower engine load, and was higher at higher engine load. With the main injection timing retarded, BSFC was slightly increased, NOx emission was evidently decreased, and soot emission hardly varied. The second peak pressure was evidently decreased and the heat release rate was slightly increased.  相似文献   

6.
H. Raheman  S.V. Ghadge 《Fuel》2008,87(12):2659-2666
The performance of Ricardo E6 engine using biodiesel obtained from mahua oil (B100) and its blend with high speed diesel (HSD) at varying compression ratio (CR), injection timing (IT) and engine loading (L) has been presented in this paper. The brake specific fuel consumption (BSFC) and exhaust gas temperature (EGT) increased, whereas brake thermal efficiency (BTE) decreased with increase in the proportion of biodiesel in the blends at all compression ratios (18:1-20:1) and injection timings (35-45° before TDC) tested. However, a reverse trend for these parameters was observed with increase in the CR and advancement of IT. The BSFC of B100 and its blends with high speed diesel reduced, whereas BTE and EGT increased with the increase in L for the range of CR and IT tested. The differences of BTEs between HSD and B100 were also not statistically significant at engine settings of ‘CR20IT40’ and ‘CR20IT45’. Thus, even B100 could be used on the Ricardo engine at these settings without affecting the performance obtained using HSD.  相似文献   

7.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

8.
By the method of data collation, research into changes in life histories (ignition delay plus time of combustion) of the compounded fuel droplets (diesel fuel-biodiesel fuel (RME)-bioethanol), as well as diesel engine D-144 brake specific fuel consumption rates was performed and obtained results being compared to diesel fuel by an analogous manner.An optimum composition of the multi-component blend B30 + 7.5E demonstrating specific fuel consumption rates and droplet combustion characteristics very similar to diesel fuel was derived. In comparison to B30, a newly derived combustible blend demonstrated fairly improved emissions of exhaust gases. For low load mode: smoke opacity (−10%), NOX (−2%), CO (−20%), and HC (−12.5%). For average load mode: smoke opacity (−10%), NOX (−2%), CO (−22%), and HC (−14.5%). For high load mode: smoke opacity (−18%), NOX (−2%), CO (−22%), and HC (−18%).  相似文献   

9.
This paper analyses the fuel injection characteristics of bioethanol-diesel fuel and bioethanol-biodiesel blends considered as fuel for diesel engines. Attention is focused on the injection characteristics which significantly influence the engine characteristics and subsequently the exhaust emissions. In this context the following injection characteristics have been investigated experimentally: fuelling, injection timing, injection delay, injection duration, mean injection rate, and injection pressure. The tested fuels were neat mineral diesel fuel, neat biodiesel made from rapeseed oil, bioethanol/diesel fuel and bioethanol/biodiesel blends up to 15% (v/v) bioethanol with an increment of 5%. The fuels blends were experimentally investigated in a fuel injection M system at rated condition (FL, 1100 rpm), peak torque (FL, 850 rpm), and maximum pump speed (1100 rpm) for different partial loads (PL 75% and PL 50%), at ambient temperature.It has been proven that for all operating regimens tested, the addition of bioethanol to biodiesel reduces fuelling, injection timing, injection duration, mean injection rate and maximum injection pressure and increases injection delay compared to pure biodiesel. Meanwhile, increasing bioethanol in diesel fuel shows no significant variations or a slightly increase in fuelling, injection timing, injection duration, and mean injection rate and a decrease in injection delay and maximum injection pressure, compared to pure diesel fuel.The influence of bioethanol in biodiesel is much more significant that in diesel fuel; it has a beneficial effect on biodiesel injection characteristics because bioethanol addition brings them nearer to the diesel fuel one and it is expected to decrease biodiesel NOx emissions.  相似文献   

10.
Cenk Sayin 《Fuel》2010,89(11):3410-3415
In this study, the effects of methanol-diesel (M5, M10) and ethanol-diesel (E5, E10) fuel blends on the performance and exhaust emissions were experimentally investigated. For this work, a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine was used. The tests were performed by varying the engine speed between 1000 and 1800 rpm while keeping the engine torque at 30 Nm. The results showed that brake specific fuel consumption and emissions of nitrogen oxides increased while brake thermal efficiency, smoke opacity, emissions of carbon monoxide and total hydrocarbon decreased with methanol-diesel and ethanol-diesel fuel blends.  相似文献   

11.
D.H. Qi  H. Chen  Y.ZH. Bian 《Fuel》2010,89(5):958-964
This work aims on the efficient use of ethanol-biodiesel-water micro-emulsions in a diesel engine. A single cylinder direct injection diesel engine is tested using neat biodiesel and the micro-emulsions as fuels under variable operating conditions. The results indicate that, compared with biodiesel, the peak cylinder pressure of the micro-emulsions is almost identical, and the peak pressure rise rate and peak heat release rate are higher at medium and high engine loads. At low engine loads, those of the micro-emulsions are lower. The start of combustion is later for the micro-emulsions than for biodiesel. For the micro-emulsions, there is slightly higher brake specific fuel consumption (BSFC), while lower brake specific energy consumption (BSEC). Drastic reduction in smoke is observed with the micro-emulsions at high engine loads. Nitrogen oxide (NOx) emissions are found slightly lower under all rang of engine load for the micro-emulsions. But carbon monoxide (CO) and hydrocarbon (HC) emissions are slightly higher for the micro-emulsions than that for biodiesel at low and medium engine loads.  相似文献   

12.
The use of biodiesel as an alternative in a diesel engine for extended period causes several engine operating problems such as injector coking, piston ring sticking, unfavorable pumping and spray characteristics due to the high viscosity of biodiesel compared to conventional diesel. In this study, a blend of 30% waste cooking palm oil (WCO) methyl ester, 60% diesel and 10% ethanol was selected based on stability test conducted and named as diestrol. The effect of diestrol fuel on the performance, emission and combustion characteristics of a direct injection diesel engine at varying injection pressure and timing was studied through experimental investigation. Maximum brake thermal efficiency of 31.3% was obtained at an injection pressure of 240 bar and injection timing of 25.5° bTDC. Compared to diesel, diestrol fuel showed reduction in carbon monoxide (CO), carbon dioxide (CO2) and smoke emission by 33%, 6.3% and 27.3% respectively. Diestrol fuel decreased nitric oxide (NO) emission by 4.3%, while slight increase in the levels of unburnt hydrocarbon (UHC) was observed. Diestrol fuel exhibited higher cylinder gas pressure and heat release rate compared to diesel. Minimum ignition delay of 12.7° CA was observed with diestrol fuel which was similar to diesel at same operating condition.  相似文献   

13.
The effect of fuel constituents and exhaust gas recirculation (EGR) on combustion characteristics, fuel efficiency and emissions of a direct injection diesel engine fueled with diesel-dimethoxymethane (DMM) blends was investigated experimentally. Three diesel-DMM blended fuels containing 20%, 30% and 50% by volume fraction of DMM, corresponding to 8.5%, 12.7% and 21.1% by mass of oxygen in the blends, were used. By the use of DMM, it is observed that CO and smoke emissions as well as the total number and mass concentration of particulate reduce significantly, while HC emissions and particulate number with lower geometric mean diameters (Di < 0.039 μm) increase slightly. For each fuel, there is an increase of ignition delay whereas a decrease of cylinder pressure and heat release rate in the premixed combustion phase when the diesel engine was operated with EGR system. The brake thermal efficiency fluctuates at small EGR ratio, while decreases with the further increase of EGR ratio. With an increase of EGR ratio, NOx emission is reduced at the cost of increased smoke, HC and CO emissions as well as the total number and mass of particulates for each fuel.  相似文献   

14.
The influence of direct water injection (DWI) on emissions from a multivariable large-scale (6–18 cyl, ~ 1 MW/cyl) diesel engine is reported, using a combined injection valve and nozzle that allows for injection of water and fuel oil into the cylinder. This method allows for injecting a relatively large amount of water without derating the engine power and NOx emissions can be more than halved by DWI. Indeed DWI decreases combustion temperatures and NOx emissions, but it gives somewhat increased (yet not problematic) emissions of CO, HC, soot (smoke) and particulate matter (PM), depending on the water injection timing and degree of incomplete combustion.  相似文献   

15.
The purpose of this study was to analyze the exhaust emissions of DME fuel through experimental and numerical analyses of in-cylinder spray behavior. To investigate this behavior, spray characteristics such as the spray tip penetration, spray cone angle, and spray targeting point were studied in a re-entrant cylinder shape under real combustion chamber conditions. The combustion performance and exhaust emissions of the DME-fueled diesel engine were calculated using KIVA-3V. The numerical results were validated with experimental results from a DME direct injection compression ignition engine with a single cylinder.The combustion pressure and IMEP have their peak values at an injection timing of around BTDC 30°, and the peak combustion temperature, exhaust emissions (soot, NOx), and ISFC had a lower value. The HC and CO emissions from DME fuel showed lower values and distributions in the range from BTDC 25° to BTDC 10° at which a major part of the injected DME spray was distributed into the piston bowl area. When the injection timing advanced to before BTDC 30°, the HC and CO emissions showed a rapid increase. When the equivalence ratio increased, the combustion pressure and peak combustion temperature decreased, and the peak IMEP was retarded from BTDC 25° to BTDC 20°. In addition, NOx emissions were largely decreased by the low combustion temperature, but the soot emissions increased slightly.  相似文献   

16.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

17.
An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors (θspray = 70° and 60°) were examined and its results were compared with the results of conventional spray angle (θspray = 156°). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40° of the crank angle.The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors (θspray = 70° and 60°) is increased, as compared to the results of the wide-angle injector (θspray = 156°) with advanced injection timing of BTDC 35°. In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NOx emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25°, whereas BTDC 20° for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With advanced timing of the first injection, narrow-angle injectors with multiple injections could achieve low NOx levels and soot levels similar to single-injection cases.  相似文献   

18.
《Fuel》2006,85(5-6):717-724
This paper presents test results obtained from running a 1.5 L, 4-cylinder Proton Magma retrofitted spark ignition car engine with dynamometer. Performance, fuel consumption and exhaust emissions measurements were recorded under steady state operating conditions for gasoline and compressed natural gas (CNG). The engine was converted to computer integrated bi-fueling system from a gasoline engine and was operated separately either with gasoline or CNG using an electronically controlled solenoid actuated valve system. A PC based data acquisition and control system was used for controlling all the operation. A comparative analysis of the performance and emissions has been made for gasoline and CNG. Based on the experimental results, it is transparent that CNG shows low brake mean effective pressure (BMEP), brake specific fuel consumptions (BSFC), higher efficiency and lower emissions of CO, CO2, HC but more NOx compared to gasoline.  相似文献   

19.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

20.
T. Lakshmanan  G. Nagarajan 《Fuel》2011,90(8):2571-2577
As the world finds itself in the midst of universal energy shortage, compounded by a parallel need to reduce pollutants of all kinds; we must take serious look at novel sources of abundant energy and methodology of its use. Acetylene with its remarkable combustion properties appear to be proving itself as the best fuel for future internal engines if it is utilised properly. Because of inherent difficulties in handling acetylene, technology has emphasized the utilization of acetylene by injection techniques to combat back fire in internal combustion engines. An experimental investigation was carried out on a single cylinder, air cooled, DI diesel engine designed to develop 4.4 kW at 1500 rpm. Acetylene was injected into the intake port as a secondary fuel and diesel was injected directly into the cylinder. The optimized injection time of 5° aTDC and injection duration of 90 °CA (9.9 ms) was arrived. The gas flow rate was fixed at 110 g/h, 180 g/h and 240 g/h. The combustion, performance and emission parameters were studied for the above flow rates by varying the load from low load to full load. Results show that NOx, HC and CO emissions reduced when compared to diesel operation due to leaner operation. A marginal increase in smoke emission was observed and brake thermal efficiency was nearer to diesel operation. On the whole it is concluded that without loss in thermal efficiency, safe operation of acetylene is possible in timed port injection technique. Reduced NOx, HC and CO emission levels, with marginal increase in smoke emission level were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号